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1 Introduction 
As the agriculture sector itself has become increasingly reliant on data collection and analysis (Elliott and 
Elliott 2020b), so have agricultural and applied economics researchers, over time, had to enhance their 
ability to work with and convey the broad implications of data. This need for data science skills arises not 
only from the technical demands of cutting-edge big data analysis but also from the necessity of clearly 
and responsibly communicating research findings to diverse audiences. With several decades of 
advancements in statistical computing and the proliferation of open-source software, there are now very 
few reasons why budding applied economists should not leave their studies with a solid understanding of 
the basic principles of data visualization and how to execute them. 

In his introductory text on data visualization, Healy (2019) implores researchers to simply “look at 
your data” before attempting to communicate any corresponding ideas or findings. This paper focuses on 
two complementary aspects of how instructors in agricultural and applied economics can better teach 
audiences to look at their data. First and foremost, every student, researcher, or individual is, at one point 
or another, the audience of a data visualization. Thus, educators also have a responsibility to teach 
students how to properly consume visualized data. While applied researchers are often well aware of how 
they can—intentionally or inadvertently—“lie with statistics” (Huff 1954), students and stakeholders 
without a statistical background are often unaware of how data visualizations might mislead. As such, the 
principles of graph literacy are just as important as those of visualization itself. Moreover, given the role 
many applied economists play as state specialists through their universities’ Cooperative Extension 
programs, it is crucial that they use their expertise to teach graph literacy to stakeholders in agriculture 
and rural development. 

Second is the process of visualization itself. Researchers have virtually endless options for 
conveying findings via their data, and there are numerous pitfalls that can render a visualization 
ineffective at best and deceptive at worst. In addition to their role in the classroom, applied economists 
often engage in outreach activities that help translate research into actionable insights. This includes 
working with Cooperative Extension programs to communicate complex information in ways that 

Teaching and Educational Methods 

Abstract 
This article highlights the critical role of data visualization in applied economics education and 
outreach. We first outline some general principles for teaching graph literacy and data visualization 
principles in and out of the classroom. We then discuss the mechanics of visualizing data—collection, 
preparation, and visualization—with an emphasis on how instructors can teach each step using the R 
and/or Python statistical environments. We ultimately contend that the requisite skills for successful 
data visualization are indispensable for students trained in today’s agricultural and applied economics 
programs to communicate their research effectively. 
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support decision-making in agricultural and rural communities. Ensuring that stakeholders can both 
interpret and create effective data visualizations is essential for bridging the gap between research and 
real-world applications. 

This paper outlines principles and techniques for teaching data visualization and graph literacy to 
advanced students in agricultural and applied economics as well as outreach audiences. After discussing 
visualization principles for students and stakeholders, we propose a framework for teaching data 
visualization in R or Python and then discuss guidelines and best practices for applied economics 
instructors to help students transform their raw data into effective storytelling for their research. Our 
framework for teaching data visualization is most suited for courses designed for students with 
experience in a coding language and a beginner to intermediate grasp of math and statistics. For learning 
the basics of coding, there are a number of free, online resources on data visualization and coding that 
can complement this framework or be taught as a prerequisite.1 As data visualization has become an 
indispensable part of a researcher’s toolkit, we believe that these skills are now indispensable for any 
applied economics program. 

Our discussion of data visualization principles joins a few other articles discussing the role of data 
analytics in agricultural economics and agribusiness education. Jin et al. (2024) and Elliot and Elliot 
(2020b) discuss data analysis and visualization exercises and lessons learned from their implementation. 
Minegishi and Mieno (2020) and Elliot and Elliot (2020a) discuss resources in R for analysis in applied 
economics and Extension education. Our paper builds on this work by focusing on the principles of 
teaching data visualization and by providing practical resources for teaching them in the classroom. 

The remainder of this paper is structured as follows. Section 2 discusses teaching students and 
learners of all backgrounds how to interpret and critically consume visualized data, particularly from an 
engaged outreach context (i.e., Cooperative Extension). Section 3 outlines a set of principles for 
instructing students on both the mechanical processes of visualizing data as well as the aesthetic, 
practical, and ethical considerations that contribute to quality visualizations. Section 4 introduces the 
data visualization pipeline, which includes the three key stages of data collection, processing, and 
visualization. We conclude with a reproducible code example illustrating the stages of the pipeline in R 
and Python. 

2 Teaching Graph Literacy to Student and Outreach Audiences 
While not all students or stakeholders will regularly produce data visualizations, they are all very likely 
to be regular consumers of data visualizations. Thus, teaching graph literacy to both university and 
nonuniversity audiences is important to the mission of many agricultural and applied economics 
departments. University faculty, particularly in agricultural and applied economics departments, are 
often called upon to extend their expertise beyond research and classroom teaching to address pressing 
local issues. In the United States, these departments are uniquely positioned within academia, frequently 
leveraging Cooperative Extension as a key outreach platform. In outreach settings, graph literacy is 
crucial for empowering stakeholders to interpret data visualizations accurately. By teaching stakeholders 
how to identify misleading visualizations and understand the context of data, we enhance their ability to 
make informed decisions based on research findings. In this section, we discuss some principles of graph 
literacy that can be used for outreach education, focusing primarily on correctly interpreting data 
visualizations and critiquing poor and ineffective ones. 

                                                        
1 For Python, Jake VanderPlas’s book Python Data Science Handbook, Jared Hutchins’s course Data Science for Applied 
Economics, and Matthew Brett’s course Coding for Data are good resources that are publicly available. For R, Julian Ludwig’s 
course Data Analysis for Economic Research and Nick Hagerty’s course Advanced Data Analytics in Economics also have 
lecture material that is made publicly available. 

https://jakevdp.github.io/PythonDataScienceHandbook/
https://github.com/jphutch/ACE-592-SAE
https://github.com/jphutch/ACE-592-SAE
https://matthew-brett.github.io/cfd2019/
https://www.julianfludwig.com/daer/
https://github.com/msu-econ-data-analytics/course-materials
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Applied economists doing outreach frequently engage in settings where they must communicate 
data-driven findings or conclusions—on topics ranging from crop yields to farm finance and community 
economic development—to nonacademic audiences. While straightforward tables and raw figures can 
convey basic information, data visualizations offer a more intuitive and impactful way to communicate 
complex findings. Visual tools such as bar charts, line graphs, and scatter plots are central to Extension 
work, allowing experts to readily convey patterns, comparisons, and relationships in ways that resonate 
with broader audiences. 

These experts, however, have an important responsibility not just to present data but also to equip 
stakeholders with the skills to interpret future visualizations—whether USDA charts, US Census maps, or 
other graphical representations of key trends. This empowers community members to independently 
analyze and apply data long after the expert has left the room. 

We strongly encourage all applied economists to incorporate an educational component on graph 
literacy into their outreach efforts. While instructional approaches will differ based on context and 
learners’ knowledge levels, the following four questions can serve as a starting point for developing 
graph literacy among outreach audiences: 

 What do you see? Ask learners to observe the figure closely and summarize the main takeaway in 
one sentence. This exercise encourages them to focus on the core message of the visualization and 
extract a clear, understandable insight from complex data. 

 Who created the visualization? Emphasize the importance of understanding the source and context 
of the figure, especially if it might convey a political or advocacy-based message. Recognizing the 
creator often reveals the purpose behind the figure’s design. 

 Are you being tricked? Introduce learners to common techniques that can make visualizations 
deceptive. Even a basic awareness of these tactics can empower them to critically evaluate and 
interpret what they see. 

 What is missing? Encourage learners to consider what data or context might have been left out of 
the visualization. Doing so helps them think critically about possible gaps, assumptions, or 
alternative perspectives that could change the interpretation. 

Though not comprehensive, these principles provide a solid foundation to educate nonacademic 
stakeholders—farmers, small business owners, local government officials, etc.—on how to more 
effectively discern insights communicated through data visualizations. By fostering graph literacy, 
applied economists can enhance the long-term impact of their outreach, enabling stakeholders to make 
more informed decisions based on data in their everyday operations and planning. 
 

3 Teaching Data Visualization Principles in the Classroom 
Beyond simply knowing how to write code to produce visualizations, students need to understand the 
principles of good data visualization and when to use the tools they have. In this section, we focus on data 
visualization principles that are important for effective communication. We first discuss how to teach 
students to choose the appropriate type of graph and then transition to discussing data visualization 
principles and pitfalls to discuss with students. Rather than discuss these principles in detail, we give a 
broad outline of some principles and point the reader to more detailed discussions such as Wilke (2019) 
and Tufte (2001) for general principles and Healy (2019) and Kabacoff (2024) for R specifically.) 
Kabacoff (2024) and Wilke (2019) may be particularly useful to instructors and students because they 
are available as free e-books online under Creative Commons licenses. 
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3.1 The Data Visualization Decision Tree 
The effectiveness of any given data visualization hinges on a single question: “What are you trying to 
show?” Figure 1 shows a decision tree adapted from Abela (2009) with four main branches—
distribution, composition, relationship, and comparison—each pertaining to a different tactic for 
visualizing data. We briefly discuss each branch below and a fifth approach, geography, which includes 
maps and visualizations that are uniquely spatial. 

3.1.1 Distribution 
Visualizing the distribution of data entails illustrating how data points are dispersed across different 
values. Common approaches include histograms, box plots, and kernel densities, all of which help 
observers grasp the frequency of data points within certain ranges. For instance, consider a simple 
dataset with the number of active crop insurance payments by county. Descriptive statistics, such as the 
mean and standard deviation, can provide a general sense of how the data is distributed. However, a 
visualization of the distribution of policy payments can help uncover patterns like skewness or outliers, 
which basic descriptive statistics may not indicate. 

3.1.2 Composition 
Pie charts are often regarded as the go-to method for showing how a whole is divided into parts, but 
many alternatives for visualizing data composition are preferable to pie charts. Waffle plots, for instance, 
serve the same purpose but are generally considered more readable, as the human brain struggles to 
compare angles and slices of slightly different sizes (Van den Eeckhout, 2021). While both plots in Figure 

 

Figure 1. Data Visualization Decision Tree 

Source: Adapted from Abela (2009). 
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2 use data from the latest Census of Agriculture to illustrate how cropland is allocated among the top 
seven field crop commodities in Michigan, the waffle plot at right  communicates the relative proportions 
much more clearly. 

 

3.1.3 Relationship 
Visualizations like the scatter plot, with two variables plotted along vertical and horizontal axes, are best 
for exploring how multiple variables interact. Additional variables can be represented in a scatter plot by 
allowing the size, shape, color, and transparency of each point to vary. However, too many variables might 
obscure rather than clarify, as a simple bivariate scatterplot is already a very efficient way to illustrate 
correlations or associations between two or more variables. 

3.1.4 Comparison 
Comparison visualizations are useful for comparing different datasets or categories, offering a clear way 
to visually assess values across various groups or monitor changes over time. Comparison 
visualizations—like bar charts and line charts—make spotting trends, patterns, and differences within 
the data easier. 

3.1.5 Geography 
It could be argued that spatial data visualization is not a separate category from the approaches listed 
above. However, while it is true that maps may be created to show spatial distributions, compositions, 
relationships, and comparisons, maps are a wholly distinct type of data visualization in that they pertain 
to real, physical space. As demonstrated in Figure 3, a basic histogram (at right)—using Census data to 
visualize, for example, the distribution of median household incomes across all counties in Illinois—
cannot speak to the question of where this distribution takes place. In comparison, the choropleth map (at 
left) is not as helpful at visualizing the numeric distribution of income, but it provides an immediate 
indication of which counties are home to the highest incomes. Spatial data visualization is part of a larger 
field of knowledge, geographic information systems (GIS). Maps can be a powerful tool for visualizing 
data with a crucial geographic component. 

 

Figure 2. Side-by-side comparison of pie chart and waffle plot 

Source: USDA NASS (2024). 
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3.2 Teaching Visualization Principles 
It has often been said that where there are many treatments there is no cure. The aphorism holds true for 
data visualization: there is no one, universally agreed upon set of principles that all students should learn. 
Instead, many resources present their own specific philosophy of data visualization, including a list of 
principles and usually a list of “sins” that should be avoided. This subsection outlines some popular 
principles from Tufte (2001) and Healy (2019) that can engage students and help them think more 
critically about data visualization. 

One seminal text in data visualization is The Visual Display of Quantitative Information by Tufte 
(2001), a statistician at Princeton University. The volume contains many examples of good and bad data 
visualization, both historical and current, which he uses to illustrate his principles of graphical design. In 
the 2001 edition, these five principles are 

• above all else, show the data; 
• maximize the data-ink ratio; 
• erase nondata-ink; 
• erase redundant data-ink; 
• revise and edit. 

To understand these principles, students must first be introduced to some of his concepts, 
including data-ink, which refers to parts of the graph depicting the data; nondata-ink, which refers to all 
other parts of the graph; and the data-ink ratio, which refers to what percentage of the graph’s “ink” is 
actually depicting the data. Tufte’s approach is considerably minimalist and particularly unforgiving to 
parts of graphics that do not depict actual data points. For example, Tufte (2001) devotes Chapter 5 to 
what he calls “chartjunk,” for example hatching of bar graphs, grids, and needless ornamentation. Some 
may find Tufte’s dogged removal of nondata chart elements to be extreme, but it serves the pedagogical 
purpose of encouraging students to be intentional about what they put in their graphs. One class activity 
can be displaying a plot from the book and working through which elements Tufte removes (see Figure 4 
for an example with a box plot inspired by the book). The exercise can then be repeated with a new chart 
in groups or collaboratively as a class. 

 

Figure 3. Side-by-side comparison of choropleth map and histogram 

Source: US Census Bureau (2023). 
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Arguably, one of Tufte’s most enduring principles is that “the representation of numbers, as 
physically measured on the surface of the graphic itself, should be directly proportional to the numerical 
quantities represented” (Tufte 2001, p. 56). A version of this principle is often referred to as the Principle 
of Proportional Ink, a name attributed to Bergstrom and West (2016). Simply put, if a data point takes up 
a lot of space on the graph, it should be because the data point has a large value. Chapter 2 of Tufte 
(2001), “Graphical Integrity,” contains multiple violations of this principle. Along with the data-ink ratio, 
Tufte calculates the “lie factor” of a graph as the extent to which the space devoted to a data point in the 
graph over- or understates the true value. From these examples, Tufte derives more design principles: 

(1) Show data variation, not design variation (i.e., parts of the graph not depicting data). 

(2) The number of information-carrying dimensions depicted should not exceed the number of 
dimensions in the data. 

• Corollary: never use more than one dimension to depict one-dimensional data. 

(3) Graphics must not quote data out of context. 

A different but related set of visualization principles is articulated in Wilke (2019). Along with the 
Principle of Proportional Ink, Wilke gives guidance on color selection and aesthetics that can complement 
Tufte. Wilke distinguishes between three uses of color in a visualization in Chapter 4, “Color Scales”: 

• color as a tool to distinguish 
• color to represent data values 
• color as a tool to highlight 

In the first case, the color scale is discrete and helps distinguish between different categories. In 
the second case, the color scale is continuous and helps distinguish a continuous variable. In the third 
case, a color is used sparingly to draw attention to a specific data point or points. 

Misapplication of these principles leads to some pitfalls that Wilke (2019) discusses in Chapter 19, 
“Common Pitfalls of Color Use.” For using color to distinguish, Wilke suggests only distinguishing three to 

 4(a) Example box plot 4(b) Same box plot with no nondata-ink 

  

Figure 4. Box plot with Tufte-style edits 

Notes: See Tufte (2001). 
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five categories at most. Otherwise, it is difficult for the reader to keep track of differences. Another pitfall 
is “color for the sake of color,” where data points are colored but the colors hold no meaning. Wilke also 
discusses the use of nonmonotonic color maps for monotonic values. Figure 5 shows county-level US 
unemployment rates for 2022 from the Bureau of Labor Statistics using two color map options: rainbow 
(called “Jet”) and blues (called “Blues”). The unemployment rate is a monotonic continuous variable, but 
the rainbow colormap is a nonmonotonic colormap. The effect of using this colormap is that it invites 

5(a) Nonmonotonic colormap (name: “Jet”) 

 

5(b) Monotonic colormap (name: “Blues”) 

 

Figure 5. County unemployment rates in 2022 

Source: Bureau of Labor Statistics. 
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grouping of counties by the similarities of their colors: the eye wants to group red and orange counties 
together, as it does for green counties and blue counties. This leads to grouping counties in the 2–3.5 
unemployment rate range as well as those in the 3.5–4.5 and 4.5–6 ranges. However, there is no intuitive 
reason for red to be “higher” than blue, and so the comparisons are more difficult if the objective is to 
compare one county to any other. When using a “blues” colormap, which is monotonic, the comparison 
between high and low unemployment rate counties is much easier and more intuitive. This is an example 
where a nonmonotonic colormap such as a rainbow is inappropriate for a continuous variable.2 

Another pitfall that Wilke points out is the inappropriate use of a diverging color map. A red-blue 
diverging colormap, for example, can be useful for drawing attention to values that deviate from a 
midpoint or to show growth rates by making all data points with a negative growth rate red and those 
with a positive growth rate blue. Figure 6 charts change in county-level US unemployment rates between 
2021 and 2022. Between these two years, the unemployment rate fell in 96 percent of counties. 

In Figure 6(a), the top and bottom of the color bar are 5 and −5 percentage points, making the 
diverging point 0. In Figure 6(b), the top of the color bar is shifted to 3 to make −1 the diverging point 
instead. Simply changing the midpoint drastically changes the interpretation. The first plot appears to 
accurately reflect the fact that unemployment fell nearly everywhere, while the second makes it appear 
that it only fell in certain places. In fact, only 48 percent of counties experienced unemployment rate 
drops greater than 1, which makes roughly half of the counties red and half blue in the second figure. As 
in Figure 5, readers tend to group counties by color, and a simple change in the diverging point leads to 
significant changes in which values a reader will group as similar. 

A final pitfall that Wilke points out is not using colormaps that are robust to color-vision 
deficiency. When publishing figures, it is important to understand the range of audience that will be 
reading it and use colors that can be distinguished by as many people as possible. Depending on the 
publication outlet, how the colors look in grayscale might also need to be considered. Correcting for 
color-vision deficiency and grayscale printing were two considerations that led to the creation of the 
colormap viridis, now the default in matplotlib, which can be interpreted regardless of color-vision 
deficiency and distinguished in grayscale (Smith and van der Walt 2015). 

Furthermore, instructors who teach culturally diverse groups may also need to discuss what 
colors could connotate to different audiences. For example, the map in Figure 6 shows unemployment 
rates across the United States using red and blue colors. However, since red and blue are also colors 
associated with political parties in the United States, that colormap may inadvertently cause the map to 
have a political interpretation. This also extends to connotations of emotions or physical sensations that 
may be attached to certain colors in multiple contexts (e.g., red is hot and blue is cold) (see Adams and 
Osgood 1973; Madden et al. 2000). 

3.3 Teaching Data Visualization “Sins” in the Classroom 
To reinforce both graph literacy and design principles for students and stakeholders, instructors may find 
it useful to teach using negative examples. Further applications of the above principles to real-life 
examples can help students spot some common “sins” committed by deceptive graphs, including 

• truncating the y-axis to make small changes appear large, 
• using changes in area to depict changes in a single variable (univariate data), 
• using inconsistent axes and ticks to distort trends. 

                                                        
2 The rainbow colormap is, in fact, a subject of constant debate. There continues to be a lively discussion about its use in data 
visualization, where earlier papers view it unfavorably (Rogowitz and Treinish 1998; Borland and Taylor 2007) and other, 
recent papers defend its use (Reda 2022; Ware et al. 2023). Engaging a class in this debate is another fun way to engage 
students to think critically about color in visualization. 
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Rather than teaching what to do, it can often be helpful to help students understand what not to do 
by critiquing data visualizations that are of poor quality. Wilke (2019) offers one framework for 
critiquing visualizations using the terms 

• ugly: having to do with aesthetic problems (e.g., distracting fonts or colors that are too bright); 
• bad: having to with perception problems (e.g., a figure is hard to read); 
• wrong: having problems of accuracy (e.g., an inconsistent x-axis scale). 

6(a) Diverging point at 0 

 

6(b) Diverging point at −1 

 

Figure 6. Change in county-level US unemployment rates, 2021–2022 

Source: Bureau of Labor Statistics 
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Throughout his text, Wilke (2019) uses this framework to critique several visualizations of the 
same data to help readers compare visualization approaches. Similarly, Tufte (2001) critiques 
visualizations with his own, more minimalist principles and is especially critical of chartjunk. Tufte is 
especially critical of when excessive ink makes data points appear too big, a violation of the proportional 
ink principle. 

Using the above applications and framework, we suggest two class activities that can be 
implemented to help students articulate and apply these principles. The first exercise is to ask students to 
submit poorly implemented data visualizations to be analyzed by the class. One recurring classroom 
activity used by an author of this paper is encouraging students to find data visualizations that have these 
issues. That author implements this assignment in their data science class and calls it “the hunt for the 
worst data visualization,” encouraging students to submit visualizations throughout the semester. At the 
beginning of the semester, two student submissions of data visualizations are assessed and the worst one 
is considered the first winner. Each time there is a new submission, students vote on which one is worse, 
the new submission or the current winner, and the winner goes on to be judged against the next 
submission. At the end of the course, the final winning submission is judged against the previous year’s 
winner. 

The idea of this exercise is not simply to point out what is wrong with a visualization. Instead, for 
each submission, students should be prompted to articulate what exactly about the visualization is 
unsightly or misleading. After understanding its pitfalls, students should then be asked how they would 
improve it using the principles taught from the texts. 

Another exercise is to compare different visualizations of the same data. In the above exercise, it 
may be the case that the data being visualized is of poor quality and distracts students from critiquing the 
design. Using the same data source but different visualizations focuses attention on the advantages and 
disadvantages of each approach. Wilke (2019) provides some pairs of graphs that can be used for this 
purpose; however, an instructor can also create their own examples using the decision tree described in 
Figure 1. For example, students can be shown a distribution of data visualized with first a histogram and 
then a kernel density. Unlike the “hunt for the worst data visualization,” the objective here is less to point 
out pitfalls and more to emphasize what each visualization technique emphasizes in the data. 

4 The Data Visualization Pipeline 
In this section, we outline a concept useful for teaching data visualization and data science skills: the data 
visualization pipeline. The pipeline can be thought of as the process by which data is read in, processed, 
and analyzed to visualize it effectively (see Table 1). Each stage of the pipeline requires specific skills to 
be taught. The first stage of the data visualization pipeline is data collection via APIs, FTP, web scraping, 
or other means. After the data is obtained, the next stage is data processing, meaning cleaning and other 
necessary preparation for data analysis and/or visualization. Once the data is prepared, the last stage is 
data visualization, crafting the visualization or analysis to be used in research, outreach, or science 
communication. Teaching the pipeline can help students understand the steps needed in data 
visualization and motivates them to learn the coding skills, packages, and software needed in each step. 
Thinking of the process in these stages can also help students conceptualize the workflow and document 
their process with more clarity. For each stage of the pipeline, we describe what skills typically need to be 
taught at each stage. 

While proprietary software (e.g., Stata, MATLAB) can also be used for data visualization, we 
emphasize teaching students to code using open-source software and packages for three reasons. First, 
open-source software is free to use without a license. This is especially important for students who may 
move on to jobs where they will not have access to licenses or to a company/institution that is not willing 
to pay for a license. Second, new tools are often available in the open-source community earlier than in  
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Table 1. The data visualization pipeline 

Stage of Pipeline Python R 

Data collection   

APIs and URLs requests httr2 

 json Curl 

  Rjson 

  tidycensus 

Scraping BeautifulSoup Rvest 

 scrapy Selenium 

 selenium  

   

Data processing   

Text data nltk stringr 

 re tidytext 

  quanteda 

Image/spatial data numpy magick 

 skimage terra 

 rasterio sf 

 xarray tigris 

 geopandas tidycensus 

Numeric data pandas dplyr 

 dask data.table 

 multiprocessing parallel 

   

Data visualization matplotlib ggplot2 

Advanced seaborn ggvis 

 plotly plotly 

 bokeh Leaflet 

 
proprietary software updates. Third, using open-source software provides an opportunity for students to 
begin engaging with the open-source software community. One way to do this is to teach students how to 
collaborate on projects using the version control software Git and its online repository GitHub. Most 
cutting-edge open-source software is developed and available on GitHub; encouraging engagement with 
the platform can help students become producers of open-source software rather than just consumers. 

There are some downsides to using open-source software, however, that students and instructors 
should keep in mind. First, packages in R or Python are often developed independently of one another 
and can occasionally conflict. The more top-down approach taken by closed-source or proprietary 
software is more effective at alleviating this issue since the company retains more control over who 
collaborates on the software and how. A second downside is that, given the decentralized nature of open-
source software, technical assistance may be harder to find. Students must often learn to troubleshoot 
their own problems when using open-source software. Proprietary software often has a specific channel 
through which to obtain technical support. Regardless of these downsides, we feel that the benefits of 
open-source software outweigh the costs, so we demonstrate the data visualization pipeline using only R 
and Python packages. 
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In discussing each stage, we mention software packages and best practices within both the R and 
Python statistical computing environments. While not an exhaustive guide, our treatment of these steps 
should provide agricultural and applied economics instructors with guidance on how they can help 
students learn each stage of the pipeline. 

4.1 Data Collection 
Thanks to the prevalence of application programming interfaces (APIs), File Transfer Protocol (FTP), and 
web scraping tools, data is even easier to collect from the internet than in years past. While most students 
are familiar with downloading a CSV file onto their hard disk and reading it into software, some may be 
less familiar with downloading data directly into their software environment using an API or a URL. 
Learning to write scripts for downloading data that document the source URL and API is increasingly 
essential for students, as it enhances the transparency and reproducibility of research. 

A few important skills need to be taught to students to collect these data effectively. For data that 
is already cleaned and curated, students should be taught to use both APIs and FTP. An application 
programming interface (API) is a platform that allows users to request data using a set of protocols and 
definitions. A typical example of an API call is when someone uses a smartphone app to request real-time 
data on weather conditions in their local area. The API is the interface that connects a user’s request for 
data with the weather database. 

To use APIs, students at a minimum need to be taught how to find the API they need and the 
general method for making an API request in their software. Most APIs use the Representational State 
Transfer (REST) format and will require users to make requests with the command get and analyze the 
response code to determine whether their get request was successful. If the request succeeds, the data is 
usually available as a JSON object in the programming environment or can be downloaded onto the disk. 

A researcher can call an API to read data from a database directly into their programming 
environment. For example, most US federal statistical agencies have an API that allows users to query 
data directly from government databases after signing up for an API key (usually for free). Instead of 
searching a government website for a link to a CSV file, the API allows the researcher to make a more 
specific data query of a known, public data source. Collecting data this way makes research easier to 
reproduce and allows data to be collected in real time and at a larger scale. For example, a script can be 
written to automatically download new data as it becomes available (e.g., the Department of Labor jobs 
report). 

Table 2 provides a nonexhaustive list of APIs that are likely useful to students in applied 
economics. It also lists some APIs for private data—such as Zillow, X, and Google Maps—that can only be 
used after paying for access to the API. These companies typically charge by the number of requests, 
which means it can be quite cost-effective for researchers if they only need to query the data a few times.3 

Another method for obtaining data is the File Transfer Protocol (FTP), a communication protocol 
for transferring files across a network and one of the oldest ways to transfer data between computers. 
Instead of having an API, some websites will store their files on an FTP server that users can log on to. 
Some FTP servers require an authentication step, while others are accessible from the web browser, 
allowing data to be accessed using the URL directly without authentication. FTP servers accessible 
through a URL typically have a web address that starts with “ftp:\\” or include “ftp” somewhere in the 
name. Two examples of FTP servers for data are the US Census LEHD Origin-Destination Employment 
Statistics (LODES) data and the PRISM climate group data from Oregon State University. 

                                                        
3 The main customers of these APIs are usually app developers who want to allow their users to query the information in their 
databases repeatedly. For example, the Google Maps API could be used by an app developer to allow the app users to see their 
real-time location. Since many researchers do not anticipate having to query the database indefinitely, sending one-time data 
requests to these APIs may be affordable even for student research projects. 
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Table 2. Popular APIs for data in applied economics 

Name of API URL 

Agriculture  

QuickStats - USDA https://quickstats.nass.usda.gov/api/ 
Cropland Data Layer https://croplandcros.scinet.usda.gov/ 
  

Labor  

Bureau of Labor Statistics https://www.bls.gov/bls/api_features.htm 

Department of Labor https://developer.dol.gov/beginner/ 
  

Census  

US Census/American 
Community Survey 

https://www.census.gov/data/developers/data-sets.html 

IPUMS https://developer.ipums.org/docs/v2/apiprogram 
  

Public Finance  

Bureau of Economic 
Analysis 

https://apps.bea.gov/api/_pdf/bea_web_service_api_user_guide.pdf 

Federal Reserve (FRED) https://fred.stlouisfed.org/docs/api/fred/  

US Treasury https://fiscaldata.treasury.gov/api-documentation/ 
  

Trade  

World Bank (WITS) http://wits.worldbank.org/data/public/WITSAPI_UserGuide.pdf 

World Trade Organization https://apiportal.wto.org/ 
  

Health  

CDC https://open.cdc.gov/apis.html 

Healthcare.gov https://data.healthcare.gov/api 
  

Climate and Weather  

NOAA https://www.weather.gov/documentation/services-web-api 
  

Geography  

OpenStreetMap (Overpass 
API) 

https://wiki.openstreetmap.org/wiki/API 

US Census Boundaries 
(TIGER) 

https://www.census.gov/data/developers/data-sets/TIGERweb-
map-service.html 

Open Source Routing 
Machine 

https://project-osrm.org/docs/v5.5.1/api/#general-options 

  

Private Companies  

X/Twitter https://developer.x.com/en/products/x-api 

Zillow https://www.zillowgroup.com/developers/ 

Google Maps https://developers.google.com/maps 

https://quickstats.nass.usda.gov/api/
https://croplandcros.scinet.usda.gov/
https://www.bls.gov/bls/api_features.htm
https://developer.dol.gov/beginner/
https://www.census.gov/data/developers/data-sets.html
https://developer.ipums.org/docs/v2/apiprogram
https://apps.bea.gov/api/_pdf/bea_web_service_api_user_guide.pdf
https://fred.stlouisfed.org/docs/api/fred/
https://fiscaldata.treasury.gov/api-documentation/
http://wits.worldbank.org/data/public/WITSAPI_UserGuide.pdf
https://apiportal.wto.org/
https://open.cdc.gov/apis.html
https://data.healthcare.gov/api
https://www.weather.gov/documentation/services-web-api
https://wiki.openstreetmap.org/wiki/API
https://www.census.gov/data/developers/data-sets/TIGERweb-map-service.html
https://www.census.gov/data/developers/data-sets/TIGERweb-map-service.html
https://project-osrm.org/docs/v5.5.1/api/#general-options
https://developer.x.com/en/products/x-api
https://www.zillowgroup.com/developers/
https://developers.google.com/maps
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Accessing data on FTP servers is usually as simple as making a request to the FTP server, similar 
to making a request to an API server. In Python, using an API or an FTP server can be done using the 
requests package. For an API call, requests needs the URL and a list of parameters for querying the 
database with a get request. Downloading a file from an FTP server can also be done with requests. It 
requires students to give the URL and then navigate either through an authentication step or directly to 
the file and then use Python or R to download it either onto the disk or directly into the programming 
environment. If JSON data is downloaded, students can work with JSON files in Python the same way they 
would work with the Python object dictionaries. In R, the packages httr and curl are common for 
making requests to APIs or downloading files from FTP servers. For working with the resulting JSON 
data, the R packages rjson and jsonlite are also helpful.4 

A third method of obtaining data is through web scraping. Web scraping involves collecting data 
from web pages directly, either structured or unstructured, and is an indispensable skill for obtaining 
data that is not in a curated database but still available on web pages. An example of structured data from 
a web page is a table embedded in an HTML file, whereas unstructured data could be statistics found in 
different places in the text of an HTML file. Collecting the data manually can be time-consuming when 
several web pages need to be searched. Writing a script that searches each HTML file and extracts the 
data can be more efficient. This allows students to automate the data collection procedure and even 
scrape multiple sites in parallel using their computer’s multiple cores. 

An essential aspect of teaching students web scraping is addressing its ethical considerations. 
While most websites can be legally scraped, students should be aware that some sites include areas the 
owner prefers not to be accessed by automated tools. Website owners usually specify these sites in a file 
called robots.txt to keep search engines from directing traffic to parts of their website that can crash 
from too much traffic. Scraping web pages that owners request not to be scraped is not only an 
irresponsible research practice but can also be detrimental to the operation of the website that they are 
obtaining data from (e.g., flooding the website with so many requests that it crashes). Students should be 
encouraged to be current on these norms and protocols before scraping websites for data. 

The BeautifulSoup package—which downloads static HTML websites and allows them to be 
searched by HTML tags—is arguably the workhorse web scraping tool for Python. For R programming, 
the package rvest provides similar tools. For parallelizing web scraping, the Python package scrapy has 
safeguards for not overloading websites with requests. Another more advanced topic students can learn 
in web scraping is the use of packages like selenium, available in both R and Python, which allows the 
script to interact with the web page. This is an important tool for websites that have JavaScript elements, 
such as buttons that need to be clicked to get data, which cannot be scraped from a static HTML page with 
a package like BeautifulSoup. 

4.2 Data Processing 
Once data is downloaded into the R or Python environment, the next stage is to process it. Most students 
are familiar with the basic steps of data cleaning: tidying columns, fixing errors, identifying outliers, 
merging data sources, etc. For numeric data, this involves standard data manipulation packages like 
pandas in Python or dplyr in R. 

In this subsection, we focus on the processing of two types of unstructured data: text and image. 
Here, we are distinguishing unstructured data as data that is not in the row-column form already familiar 
to most students. Processing and cleaning numeric data already in CSV format is arguably taught already 
in most econometrics courses or is learned during the process of doing research. Thus, we find it more 

                                                        
4 A few coding examples using these packages can be found in Appendix A1. 
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useful to cover processing text and image data in this article while also mentioning more advanced data 
processing topics, such as parallelization and distributed programming. 

For teaching text analysis in economics, concepts like n-grams, tokenization, and sentiment 
analysis are important to help students engage with the current economics literature using these tools 
(Gentzkow and Shapiro 2010; Currie et al. 2020; Elliott and Elliott 2020b; Indaco 2020; Spangler and 
Smith 2022; Shapiro et al. 2022). For more details on processing text data, readers can refer to Gentzkow 
et al. (2019), which reviews some common skills and concepts needed for text analysis and examples of 
economics papers using text data. In terms of packages, an important text processing package in Python 
is nltk (Natural Language Toolkit), which includes tools for breaking down text into various levels for 
analysis (a process called tokenization) and sentiment analyzers. The sentiment analysis models in nltk 
include off-the-shelf, rule-based models such as Valence Aware Dictionary and Sentiment Reasoner 
(VADER) and trainable models such as the Naive Bayes classifier. In R, similar resources are available in 
the tidytext and quanteda packages. For either R or Python, students can also benefit from learning 
how to use regular expressions to search text and extract particular patterns of text. 

Though the use of text data is growing in economics, the use of spatial data has become even more 
ubiquitous. In particular, the economics field now heavily uses satellite (Donaldson and Storeygard 2016) 
and weather (Auffhammer et al. 2013) data to analyze topics in urban, environmental, agricultural, and 
practically every other field of applied economics. Since spatial data is often not presented in CSV format, 
teaching students a baseline level of geospatial data processing skills is essential to teaching students 
how to visualize spatial data. Students must know at least two file formats for basic geospatial data 
processing: raster (e.g., .png, .tiff) and vector (e.g., .shp, .json). 

Understanding coordinate reference systems is essential for students to learn how to work with 
these files. Students can start by learning about geographic reference systems, which approximate the 
earth as an ellipsoid (a geodetic datum) and use a geographic coordinate system to describe locations, 
often in latitude and longitude. Converting these ellipsoid-based coordinates to a flat surface results in a 
projected coordinate system. Teaching this process helps students recognize the differences between 
spatial data in geographic coordinates (like latitude and longitude) and projected coordinates and 
understand how to compare them correctly. It also introduces different map projections, which can 
prioritize accuracy in either distance or area but not both, illustrating the trade-offs of each approach. 

To process raster files, an image file with a geographic reference system attached, students also 
need to understand the basics of image processing. An image file is simply a numerical array that can be 
manipulated with any standard matrix operation. Image processing techniques, thresholding, and 
masking can then be effectively taught as simple applications of array manipulation to images. 

With foundational GIS knowledge, students can start processing raster files as two-dimensional 
arrays, where each pixel’s value corresponds to a row and column position. Raster files add geographic 
metadata to these positions, translating them into real-world coordinates like latitude and longitude. 
Thus, any operation performed on arrays can also be applied to rasters; after each transformation, the 
geographic metadata needs to be re-embedded to make it a raster again. In Python, packages like 
skimage support image processing, while rasterio and xarray handle rasters; in R, magick and terra 
serve similar functions. 

For vector files, sequences of points that represent a boundary map on a geographic grid, students 
can be similarly taught to manipulate the vector of x and y coordinates the way they would a dataset and 
then re-embed the geographic metadata. Useful packages include Python’s geopandas and shapely 
packages, with geopandas providing an interface very similar to pandas. R’s sf package is a powerful 
tool for vector editing, while the tigris package allows users to download US political boundary data 
directly from the Census Bureau’s TIGER/Line database. 
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In addition to the rise of unstructured data, numeric data has also grown larger and more 
challenging to work with. For some data visualization tasks, students may benefit from learning how to 
parallelize repetitive data processing tasks like scraping websites, estimating bootstrap statistics, or 
processing multiple files independently but simultaneously. In Python, popular parallelization packages 
are dask for the simplest operations to parallelize (often called embarrassingly parallel) and 
multiprocessing for more complex operations. In R, similar functionality is available with the package 
parallel and boot if students specifically need to bootstrap statistics. For working with large datasets, 
the Python packages dask and PySpark are useful for distributed programming, meaning processing 
data across multiple nodes of a computing cluster. In R, the package data.table is useful for working 
with large datasets while still using the data.frame front end that most R users are familiar with. 

For the most memory- or CPU-intensive operations, instructors may consider devoting part of 
their instruction to teaching students to use a high-performance computing (HPC) cluster. Working on 
these systems requires a baseline knowledge of programming in the terminal language Bash since most 
systems run on a Linux operating system and can only be accessed through a terminal using a Secure 
Shell (SSH) protocol. The usefulness of teaching students to use an HPC cluster will depend on the scale of 
the data they usually use and each class’s access to these resources. Even if they do not have access to an 
HPC, instructors can buy computing time on a larger server using the cloud computing services Google 
Cloud and Amazon Web Services (AWS). 

4.3 Data Visualization 
The final stage of the pipeline involves using R or Python to create data visualizations. Each language has 
a core plotting package essential for students to learn, as most advanced visualization packages build 
upon it. Developing familiarity with this foundational package is key, as it provides the basis for 
understanding and using other visualization tools within the language.5 

In Python, this package is matplotlib. Almost every plotting package in Python—such as 
seaborn, plotly, and bokeh—call this package as their main dependency and are built off its 
architecture. One way to approach teaching matplotlib to students is to focus on teaching students the 
two main ways to write matplotlib code: MATLAB style and object-oriented style. Originally, 
matplotlib was written to mimic the graphics commands of the software MATLAB (hence the “mat” in 
the name), and so the first way to use matplotlib is through editing an active plot (Hunter 2007). In this 
way of writing code, the user writes commands that update the data and parameters of only one plot. To 
make and edit another plot, the user has to clear that plot as the active plot. In Python programming, this 
is done by calling functions from the sublibrary matplotlib.pyplot (almost always imported into code 
as the shorthand plt). 

The object-oriented method of using matplotlib is arguably a more Pythonic way to write code, 
as it does not use an active plot but instead creates objects that the user edits directly. In this style of 
writing code, a user usually calls the function subplots from the library matplotlib.pyplot, which 
creates a figure object and an axes object. To manipulate the plot, the user can either edit the figure 
object, which is the top-level container for the whole plot, or the axes object, which contains the actual 
plotted data as well as the axis labels. The advantage of this approach is that students can create and edit 
multiple plots as objects instead of clearing the active plot when they want to create a new one. For more 
details on the differences between these approaches, readers can refer to the summary in Sanap (2020) 
and the matplotlib user guide.6 

                                                        
5 Examples of code producing basic plots in both R and Python are available in Appendix A2. 
6 User guide can be found at this link. 

https://matplotlib.org/stable/users/index.html
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While there are plotting functions in base R (default functions included without importing 
packages), the primary plotting package has more or less become ggplot2. While matplotlib was 
written to originally replicate MATLAB plotting commands, ggplot2 was designed as a “layered 
grammar of graphics” by Wickham (2010), taking inspiration from the original book The Grammar of 
Graphics (Wilkinson, 2005). The purpose of a “grammar of graphics” is to be “a tool that enables us to 
concisely describe the components of a graphic” (Wickham 2010, p. 3). The components of a graphic in 
this framework include the data, aesthetic mappings, statistical transformations, scaling, and the 
coordinate system. In ggplot2, a graph layer specifies the data, which variables are mapped to each part 
of the graph (e.g., x-axis or y-axis), what geometric object should represent their relationship, and what 
transformations should be done to the data. 

In practice, code in ggplot2 looks like a series of function calls added together with the + sign, 
with each function call representing a component of the graph. For example, the function call 
aes(x=height,y=weight) specifies that height should be mapped to the x-axis and weight to the y-
axis, geom_point() specifies the data will be represented as a scatter plot, and coord_cartesian() 
defines the coordinate system as Cartesian. Put together, a graph in ggplot2 could be coded as 
ggplot(data,aes(x=height,y=weight)) + geom_point() + coord_cartesian(). Students may 
find this structure unintuitive, which makes it important to include an explanation of the layered 
grammar of graphics philosophy explained in Wickham (2010). 

Since most of these packages are based on matplotlib and ggplot2, it is helpful for students to 
have experience with the design and syntax of Python and R’s most important plotting packages before 
learning more advanced ones. Having learned the syntax of the two packages, students can better 
understand and modify the parameters of the more advanced packages. More advanced plotting packages 
include seaborn, plotly, and bokeh for Python and lattice, ggiraph, and Leaflet for R. The 
purpose of many of these packages is to expand the sorts of plots that can be done in matplotlib and 
ggplot2, including maps, interactive graphs, and more complicated plot types. The packages plotly, 
bokeh, and ggvis can specifically be used to deploy interactive graphs as JavaScript applications, which 
can be deployed to websites. For both Python and R, the package shiny can also be used to deploy 
interactive data visualizations to web pages. 

5 An Example of the Pipeline 
To assist those unfamiliar with the process, we provide a brief illustration of the data visualization 
pipeline at work. In a recent study of crop insurance use among minority and veteran farmers, 
researchers visualized the overall volume of crop insurance policies in each US county (Hagerman et al. 
2025, refer to Figure 1). Creating a similar figure for the year 2017 uses all three stages of the data 
visualization pipeline. We present excerpts from reproducible code examples that collect, process, and 
visualize data from the USDA Risk Management Agency (RMA), USDA National Agricultural Statistics 
Service (NASS), and the US Census Bureau. In the appendix material, we include the full scripts that can 
reproduce the figures after inserting an API key for the NASS API.7 

First, data were collected from three sources: 

(1) USDA Risk Management Agency: the annual number of policies sold—pooled across all levels of 
coverage—for a given commodity in each US county in 2017 

(2) USDA National Agricultural Statistics Service: the number of farms in each US county in 2017 
(3) US Census Bureau: the TIGER/Line files for all counties in the lower 48 United States 

                                                        
7 The scripts for this section are also publicly available at the GitHub repository link for this paper. 

https://github.com/jphutch/AETR_Data_Viz/tree/main
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Figure 7. Using the NASS API to download data 

 

Figure 8. Cleaning and merging data 
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These data can either be downloaded as CSV files (to be processed as local data files on the 
researcher’s machine) or, in the case of NASS and census data, the data can be accessed via an API.8 In 
Figure 7, we show how to use requests in Python and httr to download census data from the NASS API. 
In both cases, the code sends a get request to the URL and sends back a JSON or CSV file. In the case of 

                                                        
8 Cartographic boundaries for US counties were easily collected using the tigris package (Walker 2016), which imports 
shapefiles with a few short lines of code. 

 

Figure 9. Creating a map of crop insurance policies 
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Python, the response comes back as a JSON file and there is an extra step to convert it to a pandas 
dataframe. 

Second, we merge the boundary files, NASS data, and RMA data into a single dataset (see Figure 8). 
The data files gathered from USDA include a common variable—the county FIPS (Federal Information 
Processing Standards) code—which is used as a unique identifier to join together policies sold (USDA 
RMA) and farm operations (USDA NASS). The FIPS codes are created by concatenating state and county 
FIPS codes. Before joining them, both dataframes are manipulated to sum policies by county in the RMA 
data and remove commas from numbers to make the columns numeric in the NASS data. The county and 
state boundaries are reprojected with only the lower 48 states included in the file. The boundary files are 
then merged to the RMA and NASS data to create a dataframe called df. 

At this stage, a spatial data visualization (i.e., a county map) is possible, but it would be misleading 
and largely unhelpful. This is because the crop insurance data is stored as a count of policies sold; to be 
truly beneficial to the intended audience, the data should be presented as a normalized measure, such as 
a rate or ratio. This is accomplished by dividing policies sold by the number of farm operations, 
transforming the variable into a per capita measure that can be readily compared across counties. In the 
dataframe, we divide the total policies per county by the number of farms, creating the variable 
policies_per_farm. 

Finally, once the data were collected and processed, we can use matplotlib in Python or 
ggplot2 in R to create a choropleth map of policies sold per farm at the county level. Figure 9 shows 
code in both languages that create the map. In addition to creating the map itself, the code creates a 
labeled color bar at the bottom of the figure. 

These two pathways—using either R or Python—both arrive at the same goal: a clear and concise 
map that illustrates how the use of crop insurance varies across space. The data visualization pipeline 
effectively transforms raw data into actionable insights by systematically collecting, processing, and 
presenting information in a clear and interpretable manner. This process not only enhances the clarity of 
complex data but also empowers stakeholders to make more informed decisions by providing them with 
intuitive visualizations that reveal patterns and trends that might otherwise remain hidden. 

6 Conclusion 
The ability to effectively visualize data is an essential skill for today’s applied economists and 
researchers. As the volume and complexity of data available continue to grow, the capacity to transform 
raw numbers into clear, compelling graphics will continue to be indispensable for both instructional and 
outreach purposes. 

This paper has outlined a comprehensive framework for teaching data visualization, from the 
foundational stages of data collection and processing to the principles of effective chart design and 
communication. By equipping students and stakeholders with the technical know-how to manipulate 
data in open-source software programs, as well as the critical eye to identify good versus bad 
visualizations, instructors can better prepare the next generation of applied economists to harness the 
power of data visualization. Moreover, by strengthening both data visualization and graph literacy skills, 
we enhance the ability of students and stakeholders to communicate and apply research insights 
effectively in real-world contexts. 

The framework for teaching data visualization outlined in this paper supports not only academic 
research but also the critical outreach and Extension activities that are central to applied and agricultural 
economics. The emphasis on graph literacy skills for outreach audiences ensures that the insights derived 
from agricultural research can be shared and applied by a wide range of stakeholders beyond the 
classroom. As data-driven decision-making becomes ever more prevalent, these skills will only grow in 
importance for the field.  
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Appendix A: Supplementary Code Examples 

A1 Data Collection 
In Python, the requests package is the most popular package for sending get requests to websites and 
databases. In order to download the HTML data from a webpage, the user need only put the URL into the 
get function: 

 

The status code can be checked by calling the status attribute of the request like so: 

 

A status code of 200 indicates success and any number starting with 4 usually means a failure (e.g., 404, 
401). When the get request is being sent to an API, the request must also contain data specifying what 
data is being requested. For example, this call to the NASS QuickStats API requests the total number of 
milk cows at the state level from the 2017 Census of Agriculture: 

 

The python dictionary params contains the information the API needs to pull the data and is an argument 
of the function get. If the call is successful, the data will be stored in JSON format within the response 
object, here called r. 

Here is an example of an API call just using a URL and the website Open Source Routing Machine 
(OSRM), a free API that can calculate road distance using the road network in Open Street Maps.9 Below, 
we can calculate the distance and duration of a route between Boston and New York by supplying the 

                                                        
9 These code samples were drafted with Claude 3.5 but then edited and tested by the authors. The prompt was, “Can you create 
two new code examples, one in R and one in Python, that make an API call to Open Source Routing Machine and extract the 
distance between two points?” which was followed up with “Don’t make any functions, just run the New York and Boston 
example” to make it only one API call with no functions defined. Both scripts were tested in Python 3.8 and R 4.4.1. 
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latitude and longitude points to the URL. In both R and Python, the coordinates have to be pasted into the 
URL http://router.project-osrm.org/route/v1/driving/{coords}?overview=false, where the pairs of 
coordinates go in {coords}, separated by a semicolon. 

 

A2 Data Visualization 
To demonstrate how the base visualization packages are designed in Python and R, we include code in R 
and Python that demonstrate different ways to make plots. In the first example, a random dataset is 
produced and plotted in matplotlib in the “Matlab” style and the “Object-Oriented” style.  
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In the second example, we plot the random data in “base” R and ggplot2. 
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