Applied Economics Teaching Resources ‘ AAEA

Agricultural & Applied

Teaching and Educational Methods

Data Visualization in Applied Economics Instruction and

Outreach

Jared Hutchins? and Andrew J. Van Leuven?
aUniversity of Illinois, Urbana-Champaign, ®University of Vermont

JEL Codes: A2, C8,Q1,Y1
Keywords: Data science, data visualization, Python, R programming

Abstract

This article highlights the critical role of data visualization in applied economics education and
outreach. We first outline some general principles for teaching graph literacy and data visualization
principles in and out of the classroom. We then discuss the mechanics of visualizing data—collection,
preparation, and visualization—with an emphasis on how instructors can teach each step using the R
and/or Python statistical environments. We ultimately contend that the requisite skills for successful
data visualization are indispensable for students trained in today’s agricultural and applied economics
programs to communicate their research effectively.

1 Introduction

As the agriculture sector itself has become increasingly reliant on data collection and analysis (Elliott and
Elliott 2020b), so have agricultural and applied economics researchers, over time, had to enhance their
ability to work with and convey the broad implications of data. This need for data science skills arises not
only from the technical demands of cutting-edge big data analysis but also from the necessity of clearly
and responsibly communicating research findings to diverse audiences. With several decades of
advancements in statistical computing and the proliferation of open-source software, there are now very
few reasons why budding applied economists should not leave their studies with a solid understanding of
the basic principles of data visualization and how to execute them.

In his introductory text on data visualization, Healy (2019) implores researchers to simply “look at
your data” before attempting to communicate any corresponding ideas or findings. This paper focuses on
two complementary aspects of how instructors in agricultural and applied economics can better teach
audiences to look at their data. First and foremost, every student, researcher, or individual is, at one point
or another, the audience of a data visualization. Thus, educators also have a responsibility to teach
students how to properly consume visualized data. While applied researchers are often well aware of how
they can—intentionally or inadvertently—“lie with statistics” (Huff 1954), students and stakeholders
without a statistical background are often unaware of how data visualizations might mislead. As such, the
principles of graph literacy are just as important as those of visualization itself. Moreover, given the role
many applied economists play as state specialists through their universities’ Cooperative Extension
programs, it is crucial that they use their expertise to teach graph literacy to stakeholders in agriculture
and rural development.

Second is the process of visualization itself. Researchers have virtually endless options for
conveying findings via their data, and there are numerous pitfalls that can render a visualization
ineffective at best and deceptive at worst. In addition to their role in the classroom, applied economists
often engage in outreach activities that help translate research into actionable insights. This includes
working with Cooperative Extension programs to communicate complex information in ways that
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support decision-making in agricultural and rural communities. Ensuring that stakeholders can both
interpret and create effective data visualizations is essential for bridging the gap between research and
real-world applications.

This paper outlines principles and techniques for teaching data visualization and graph literacy to
advanced students in agricultural and applied economics as well as outreach audiences. After discussing
visualization principles for students and stakeholders, we propose a framework for teaching data
visualization in R or Python and then discuss guidelines and best practices for applied economics
instructors to help students transform their raw data into effective storytelling for their research. Our
framework for teaching data visualization is most suited for courses designed for students with
experience in a coding language and a beginner to intermediate grasp of math and statistics. For learning
the basics of coding, there are a number of free, online resources on data visualization and coding that
can complement this framework or be taught as a prerequisite.! As data visualization has become an
indispensable part of a researcher’s toolkit, we believe that these skills are now indispensable for any
applied economics program.

Our discussion of data visualization principles joins a few other articles discussing the role of data
analytics in agricultural economics and agribusiness education. Jin et al. (2024) and Elliot and Elliot
(2020b) discuss data analysis and visualization exercises and lessons learned from their implementation.
Minegishi and Mieno (2020) and Elliot and Elliot (2020a) discuss resources in R for analysis in applied
economics and Extension education. Our paper builds on this work by focusing on the principles of
teaching data visualization and by providing practical resources for teaching them in the classroom.

The remainder of this paper is structured as follows. Section 2 discusses teaching students and
learners of all backgrounds how to interpret and critically consume visualized data, particularly from an
engaged outreach context (i.e., Cooperative Extension). Section 3 outlines a set of principles for
instructing students on both the mechanical processes of visualizing data as well as the aesthetic,
practical, and ethical considerations that contribute to quality visualizations. Section 4 introduces the
data visualization pipeline, which includes the three key stages of data collection, processing, and
visualization. We conclude with a reproducible code example illustrating the stages of the pipeline in R
and Python.

2 Teaching Graph Literacy to Student and Outreach Audiences

While not all students or stakeholders will regularly produce data visualizations, they are all very likely
to be regular consumers of data visualizations. Thus, teaching graph literacy to both university and
nonuniversity audiences is important to the mission of many agricultural and applied economics
departments. University faculty, particularly in agricultural and applied economics departments, are
often called upon to extend their expertise beyond research and classroom teaching to address pressing
local issues. In the United States, these departments are uniquely positioned within academia, frequently
leveraging Cooperative Extension as a key outreach platform. In outreach settings, graph literacy is
crucial for empowering stakeholders to interpret data visualizations accurately. By teaching stakeholders
how to identify misleading visualizations and understand the context of data, we enhance their ability to
make informed decisions based on research findings. In this section, we discuss some principles of graph
literacy that can be used for outreach education, focusing primarily on correctly interpreting data
visualizations and critiquing poor and ineffective ones.

1 For Python, Jake VanderPlas’s book Python Data Science Handbook, Jared Hutchins’s course Data Science for Applied
Economics, and Matthew Brett’s course Coding for Data are good resources that are publicly available. For R, Julian Ludwig’s
course Data Analysis for Economic Research and Nick Hagerty’s course Advanced Data Analytics in Economics also have
lecture material that is made publicly available.
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Applied economists doing outreach frequently engage in settings where they must communicate
data-driven findings or conclusions—on topics ranging from crop yields to farm finance and community
economic development—to nonacademic audiences. While straightforward tables and raw figures can
convey basic information, data visualizations offer a more intuitive and impactful way to communicate
complex findings. Visual tools such as bar charts, line graphs, and scatter plots are central to Extension
work, allowing experts to readily convey patterns, comparisons, and relationships in ways that resonate
with broader audiences.

These experts, however, have an important responsibility not just to present data but also to equip
stakeholders with the skills to interpret future visualizations—whether USDA charts, US Census maps, or
other graphical representations of key trends. This empowers community members to independently
analyze and apply data long after the expert has left the room.

We strongly encourage all applied economists to incorporate an educational component on graph
literacy into their outreach efforts. While instructional approaches will differ based on context and
learners’ knowledge levels, the following four questions can serve as a starting point for developing
graph literacy among outreach audiences:

e What do you see? Ask learners to observe the figure closely and summarize the main takeaway in
one sentence. This exercise encourages them to focus on the core message of the visualization and
extract a clear, understandable insight from complex data.

e Who created the visualization? Emphasize the importance of understanding the source and context
of the figure, especially if it might convey a political or advocacy-based message. Recognizing the
creator often reveals the purpose behind the figure’s design.

e Areyou being tricked? Introduce learners to common techniques that can make visualizations
deceptive. Even a basic awareness of these tactics can empower them to critically evaluate and
interpret what they see.

e What is missing? Encourage learners to consider what data or context might have been left out of
the visualization. Doing so helps them think critically about possible gaps, assumptions, or
alternative perspectives that could change the interpretation.

Though not comprehensive, these principles provide a solid foundation to educate nonacademic
stakeholders—farmers, small business owners, local government officials, etc.—on how to more
effectively discern insights communicated through data visualizations. By fostering graph literacy,
applied economists can enhance the long-term impact of their outreach, enabling stakeholders to make
more informed decisions based on data in their everyday operations and planning.

3 Teaching Data Visualization Principles in the Classroom

Beyond simply knowing how to write code to produce visualizations, students need to understand the
principles of good data visualization and when to use the tools they have. In this section, we focus on data
visualization principles that are important for effective communication. We first discuss how to teach
students to choose the appropriate type of graph and then transition to discussing data visualization
principles and pitfalls to discuss with students. Rather than discuss these principles in detail, we give a
broad outline of some principles and point the reader to more detailed discussions such as Wilke (2019)
and Tufte (2001) for general principles and Healy (2019) and Kabacoff (2024) for R specifically.)
Kabacoff (2024) and Wilke (2019) may be particularly useful to instructors and students because they
are available as free e-books online under Creative Commons licenses.
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Figure 1. Data Visualization Decision Tree
Source: Adapted from Abela (2009).

3.1 The Data Visualization Decision Tree

The effectiveness of any given data visualization hinges on a single question: “What are you trying to
show?” Figure 1 shows a decision tree adapted from Abela (2009) with four main branches—
distribution, composition, relationship, and comparison—each pertaining to a different tactic for
visualizing data. We briefly discuss each branch below and a fifth approach, geography, which includes
maps and visualizations that are uniquely spatial.

3.1.1 Distribution

Visualizing the distribution of data entails illustrating how data points are dispersed across different
values. Common approaches include histograms, box plots, and kernel densities, all of which help
observers grasp the frequency of data points within certain ranges. For instance, consider a simple
dataset with the number of active crop insurance payments by county. Descriptive statistics, such as the
mean and standard deviation, can provide a general sense of how the data is distributed. However, a
visualization of the distribution of policy payments can help uncover patterns like skewness or outliers,
which basic descriptive statistics may not indicate.

3.1.2 Composition

Pie charts are often regarded as the go-to method for showing how a whole is divided into parts, but
many alternatives for visualizing data composition are preferable to pie charts. Waffle plots, for instance,
serve the same purpose but are generally considered more readable, as the human brain struggles to
compare angles and slices of slightly different sizes (Van den Eeckhout, 2021). While both plots in Figure
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2 use data from the latest Census of Agriculture to illustrate how cropland is allocated among the top
seven field crop commodities in Michigan, the waffle plot at right communicates the relative proportions
much more clearly.

Commodity
3.3% Corn
14.7% 36.3% Dryv Edible Beans
0.5% Forage Crops
QOats
7:1% S(J_"l)('rl]lﬁ
36.1% 2.1% Sugarbeets

Wheat

Figure 2. Side-by-side comparison of pie chart and waffle plot
Source: USDA NASS (2024).

3.1.3 Relationship

Visualizations like the scatter plot, with two variables plotted along vertical and horizontal axes, are best
for exploring how multiple variables interact. Additional variables can be represented in a scatter plot by
allowing the size, shape, color, and transparency of each point to vary. However, too many variables might
obscure rather than clarify, as a simple bivariate scatterplot is already a very efficient way to illustrate
correlations or associations between two or more variables.

3.1.4 Comparison

Comparison visualizations are useful for comparing different datasets or categories, offering a clear way
to visually assess values across various groups or monitor changes over time. Comparison
visualizations—Ilike bar charts and line charts—make spotting trends, patterns, and differences within
the data easier.

3.1.5 Geography

It could be argued that spatial data visualization is not a separate category from the approaches listed
above. However, while it is true that maps may be created to show spatial distributions, compositions,
relationships, and comparisons, maps are a wholly distinct type of data visualization in that they pertain
to real, physical space. As demonstrated in Figure 3, a basic histogram (at right)—using Census data to
visualize, for example, the distribution of median household incomes across all counties in Illinois—
cannot speak to the question of where this distribution takes place. In comparison, the choropleth map (at
left) is not as helpful at visualizing the numeric distribution of income, but it provides an immediate
indication of which counties are home to the highest incomes. Spatial data visualization is part of a larger
field of knowledge, geographic information systems (GIS). Maps can be a powerful tool for visualizing
data with a crucial geographic component.
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Figure 3. Side-by-side comparison of choropleth map and histogram
Source: US Census Bureau (2023).

3.2 Teaching Visualization Principles

It has often been said that where there are many treatments there is no cure. The aphorism holds true for
data visualization: there is no one, universally agreed upon set of principles that all students should learn.
Instead, many resources present their own specific philosophy of data visualization, including a list of
principles and usually a list of “sins” that should be avoided. This subsection outlines some popular
principles from Tufte (2001) and Healy (2019) that can engage students and help them think more
critically about data visualization.

One seminal text in data visualization is The Visual Display of Quantitative Information by Tufte
(2001), a statistician at Princeton University. The volume contains many examples of good and bad data
visualization, both historical and current, which he uses to illustrate his principles of graphical design. In
the 2001 edition, these five principles are

e above all else, show the data;
e maximize the data-ink ratio;
e erase nondata-ink;

e erase redundant data-ink;

e revise and edit.

To understand these principles, students must first be introduced to some of his concepts,
including data-ink, which refers to parts of the graph depicting the data; nondata-ink, which refers to all
other parts of the graph; and the data-ink ratio, which refers to what percentage of the graph’s “ink” is
actually depicting the data. Tufte’s approach is considerably minimalist and particularly unforgiving to
parts of graphics that do not depict actual data points. For example, Tufte (2001) devotes Chapter 5 to
what he calls “chartjunk,” for example hatching of bar graphs, grids, and needless ornamentation. Some
may find Tufte’s dogged removal of nondata chart elements to be extreme, but it serves the pedagogical
purpose of encouraging students to be intentional about what they put in their graphs. One class activity
can be displaying a plot from the book and working through which elements Tufte removes (see Figure 4
for an example with a box plot inspired by the book). The exercise can then be repeated with a new chart
in groups or collaboratively as a class.

Page | 6 Advance Access



Applied Economics Teaching Resources ‘ AAEA

Agricultural & Applied

4(a) Example box plot 4(b) Same box plot with no nondata-ink
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Figure 4. Box plot with Tufte-style edits
Notes: See Tufte (2001).

Arguably, one of Tufte’s most enduring principles is that “the representation of numbers, as
physically measured on the surface of the graphic itself, should be directly proportional to the numerical
quantities represented” (Tufte 2001, p. 56). A version of this principle is often referred to as the Principle
of Proportional Ink, a name attributed to Bergstrom and West (2016). Simply put, if a data point takes up
a lot of space on the graph, it should be because the data point has a large value. Chapter 2 of Tufte
(2001), “Graphical Integrity,” contains multiple violations of this principle. Along with the data-ink ratio,
Tufte calculates the “lie factor” of a graph as the extent to which the space devoted to a data point in the
graph over- or understates the true value. From these examples, Tufte derives more design principles:

(1) Show data variation, not design variation (i.e., parts of the graph not depicting data).

(2) The number of information-carrying dimensions depicted should not exceed the number of
dimensions in the data.

e Corollary: never use more than one dimension to depict one-dimensional data.
(3) Graphics must not quote data out of context.

A different but related set of visualization principles is articulated in Wilke (2019). Along with the
Principle of Proportional Ink, Wilke gives guidance on color selection and aesthetics that can complement
Tufte. Wilke distinguishes between three uses of color in a visualization in Chapter 4, “Color Scales”:

e color as a tool to distinguish
e color to represent data values
e color as atool to highlight

In the first case, the color scale is discrete and helps distinguish between different categories. In
the second case, the color scale is continuous and helps distinguish a continuous variable. In the third
case, a color is used sparingly to draw attention to a specific data point or points.

Misapplication of these principles leads to some pitfalls that Wilke (2019) discusses in Chapter 19,
“Common Pitfalls of Color Use.” For using color to distinguish, Wilke suggests only distinguishing three to
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Figure 5. County unemployment rates in 2022

Source: Bureau of Labor Statistics.

five categories at most. Otherwise, it is difficult for the reader to keep track of differences. Another pitfall
is “color for the sake of color,” where data points are colored but the colors hold no meaning. Wilke also
discusses the use of nonmonotonic color maps for monotonic values. Figure 5 shows county-level US
unemployment rates for 2022 from the Bureau of Labor Statistics using two color map options: rainbow
(called “Jet”) and blues (called “Blues”). The unemployment rate is a monotonic continuous variable, but
the rainbow colormap is a nonmonotonic colormap. The effect of using this colormap is that it invites
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grouping of counties by the similarities of their colors: the eye wants to group red and orange counties
together, as it does for green counties and blue counties. This leads to grouping counties in the 2-3.5
unemployment rate range as well as those in the 3.5-4.5 and 4.5-6 ranges. However, there is no intuitive
reason for red to be “higher” than blue, and so the comparisons are more difficult if the objective is to
compare one county to any other. When using a “blues” colormap, which is monotonic, the comparison
between high and low unemployment rate counties is much easier and more intuitive. This is an example
where a nonmonotonic colormap such as a rainbow is inappropriate for a continuous variable.2

Another pitfall that Wilke points out is the inappropriate use of a diverging color map. A red-blue
diverging colormap, for example, can be useful for drawing attention to values that deviate from a
midpoint or to show growth rates by making all data points with a negative growth rate red and those
with a positive growth rate blue. Figure 6 charts change in county-level US unemployment rates between
2021 and 2022. Between these two years, the unemployment rate fell in 96 percent of counties.

In Figure 6(a), the top and bottom of the color bar are 5 and -5 percentage points, making the
diverging point 0. In Figure 6(b), the top of the color bar is shifted to 3 to make -1 the diverging point
instead. Simply changing the midpoint drastically changes the interpretation. The first plot appears to
accurately reflect the fact that unemployment fell nearly everywhere, while the second makes it appear
that it only fell in certain places. In fact, only 48 percent of counties experienced unemployment rate
drops greater than 1, which makes roughly half of the counties red and half blue in the second figure. As
in Figure 5, readers tend to group counties by color, and a simple change in the diverging point leads to
significant changes in which values a reader will group as similar.

A final pitfall that Wilke points out is not using colormaps that are robust to color-vision
deficiency. When publishing figures, it is important to understand the range of audience that will be
reading it and use colors that can be distinguished by as many people as possible. Depending on the
publication outlet, how the colors look in grayscale might also need to be considered. Correcting for
color-vision deficiency and grayscale printing were two considerations that led to the creation of the
colormap viridis, now the default in matplotlib, which can be interpreted regardless of color-vision
deficiency and distinguished in grayscale (Smith and van der Walt 2015).

Furthermore, instructors who teach culturally diverse groups may also need to discuss what
colors could connotate to different audiences. For example, the map in Figure 6 shows unemployment
rates across the United States using red and blue colors. However, since red and blue are also colors
associated with political parties in the United States, that colormap may inadvertently cause the map to
have a political interpretation. This also extends to connotations of emotions or physical sensations that
may be attached to certain colors in multiple contexts (e.g., red is hot and blue is cold) (see Adams and
Osgood 1973; Madden et al. 2000).

3.3 Teaching Data Visualization “Sins” in the Classroom

To reinforce both graph literacy and design principles for students and stakeholders, instructors may find
it useful to teach using negative examples. Further applications of the above principles to real-life
examples can help students spot some common “sins” committed by deceptive graphs, including

e truncating the y-axis to make small changes appear large,
e using changes in area to depict changes in a single variable (univariate data),
e using inconsistent axes and ticks to distort trends.

2 The rainbow colormap is, in fact, a subject of constant debate. There continues to be a lively discussion about its use in data
visualization, where earlier papers view it unfavorably (Rogowitz and Treinish 1998; Borland and Taylor 2007) and other,
recent papers defend its use (Reda 2022; Ware et al. 2023). Engaging a class in this debate is another fun way to engage
students to think critically about color in visualization.
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Figure 6. Change in county-level US unemployment rates, 2021-2022

Source: Bureau of Labor Statistics
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Rather than teaching what to do, it can often be helpful to help students understand what not to do
by critiquing data visualizations that are of poor quality. Wilke (2019) offers one framework for

critiquing visualizations using the terms

e ugly: having to do with aesthetic problems (e.g., distracting fonts or colors that are too bright);

e bad: having to with perception problems (e.g., a figure is hard to read);
e wrong: having problems of accuracy (e.g., an inconsistent x-axis scale).
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Throughout his text, Wilke (2019) uses this framework to critique several visualizations of the
same data to help readers compare visualization approaches. Similarly, Tufte (2001) critiques
visualizations with his own, more minimalist principles and is especially critical of chartjunk. Tufte is
especially critical of when excessive ink makes data points appear too big, a violation of the proportional
ink principle.

Using the above applications and framework, we suggest two class activities that can be
implemented to help students articulate and apply these principles. The first exercise is to ask students to
submit poorly implemented data visualizations to be analyzed by the class. One recurring classroom
activity used by an author of this paper is encouraging students to find data visualizations that have these
issues. That author implements this assignment in their data science class and calls it “the hunt for the
worst data visualization,” encouraging students to submit visualizations throughout the semester. At the
beginning of the semester, two student submissions of data visualizations are assessed and the worst one
is considered the first winner. Each time there is a new submission, students vote on which one is worse,
the new submission or the current winner, and the winner goes on to be judged against the next
submission. At the end of the course, the final winning submission is judged against the previous year’s
winner.

The idea of this exercise is not simply to point out what is wrong with a visualization. Instead, for
each submission, students should be prompted to articulate what exactly about the visualization is
unsightly or misleading. After understanding its pitfalls, students should then be asked how they would
improve it using the principles taught from the texts.

Another exercise is to compare different visualizations of the same data. In the above exercise, it
may be the case that the data being visualized is of poor quality and distracts students from critiquing the
design. Using the same data source but different visualizations focuses attention on the advantages and
disadvantages of each approach. Wilke (2019) provides some pairs of graphs that can be used for this
purpose; however, an instructor can also create their own examples using the decision tree described in
Figure 1. For example, students can be shown a distribution of data visualized with first a histogram and
then a kernel density. Unlike the “hunt for the worst data visualization,” the objective here is less to point
out pitfalls and more to emphasize what each visualization technique emphasizes in the data.

4 The Data Visualization Pipeline

In this section, we outline a concept useful for teaching data visualization and data science skills: the data
visualization pipeline. The pipeline can be thought of as the process by which data is read in, processed,
and analyzed to visualize it effectively (see Table 1). Each stage of the pipeline requires specific skills to
be taught. The first stage of the data visualization pipeline is data collection via APIs, FTP, web scraping,
or other means. After the data is obtained, the next stage is data processing, meaning cleaning and other
necessary preparation for data analysis and/or visualization. Once the data is prepared, the last stage is
data visualization, crafting the visualization or analysis to be used in research, outreach, or science
communication. Teaching the pipeline can help students understand the steps needed in data
visualization and motivates them to learn the coding skills, packages, and software needed in each step.
Thinking of the process in these stages can also help students conceptualize the workflow and document
their process with more clarity. For each stage of the pipeline, we describe what skills typically need to be
taught at each stage.

While proprietary software (e.g., Stata, MATLAB) can also be used for data visualization, we
emphasize teaching students to code using open-source software and packages for three reasons. First,
open-source software is free to use without a license. This is especially important for students who may
move on to jobs where they will not have access to licenses or to a company/institution that is not willing
to pay for a license. Second, new tools are often available in the open-source community earlier than in
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Stage of Pipeline Python R
Data collection
APIs and URLs requests httr2
json Curl
Rjson
tidycensus
Scraping BeautifulSoup Rvest
scrapy Selenium
selenium
Data processing
Text data nltk stringr
re tidytext
quanteda
Image/spatial data numpy magick
skimage terra
rasterio st
xarray tigris
geopandas tidycensus
Numeric data pandas dplyr
dask data.table
multiprocessing parallel
Data visualization matplotlib ggplot2
Advanced seaborn ggvis
plotly plotly
bokeh Leaflet

proprietary software updates. Third, using open-source software provides an opportunity for students to
begin engaging with the open-source software community. One way to do this is to teach students how to
collaborate on projects using the version control software Git and its online repository GitHub. Most
cutting-edge open-source software is developed and available on GitHub; encouraging engagement with
the platform can help students become producers of open-source software rather than just consumers.

There are some downsides to using open-source software, however, that students and instructors
should keep in mind. First, packages in R or Python are often developed independently of one another
and can occasionally conflict. The more top-down approach taken by closed-source or proprietary
software is more effective at alleviating this issue since the company retains more control over who
collaborates on the software and how. A second downside is that, given the decentralized nature of open-
source software, technical assistance may be harder to find. Students must often learn to troubleshoot
their own problems when using open-source software. Proprietary software often has a specific channel
through which to obtain technical support. Regardless of these downsides, we feel that the benefits of
open-source software outweigh the costs, so we demonstrate the data visualization pipeline using only R
and Python packages.
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In discussing each stage, we mention software packages and best practices within both the R and
Python statistical computing environments. While not an exhaustive guide, our treatment of these steps
should provide agricultural and applied economics instructors with guidance on how they can help
students learn each stage of the pipeline.

4.1 Data Collection

Thanks to the prevalence of application programming interfaces (APIs), File Transfer Protocol (FTP), and
web scraping tools, data is even easier to collect from the internet than in years past. While most students
are familiar with downloading a CSV file onto their hard disk and reading it into software, some may be
less familiar with downloading data directly into their software environment using an API or a URL.
Learning to write scripts for downloading data that document the source URL and API is increasingly
essential for students, as it enhances the transparency and reproducibility of research.

A few important skills need to be taught to students to collect these data effectively. For data that
is already cleaned and curated, students should be taught to use both APIs and FTP. An application
programming interface (API) is a platform that allows users to request data using a set of protocols and
definitions. A typical example of an API call is when someone uses a smartphone app to request real-time
data on weather conditions in their local area. The API is the interface that connects a user’s request for
data with the weather database.

To use APIs, students at a minimum need to be taught how to find the API they need and the
general method for making an API request in their software. Most APIs use the Representational State
Transfer (REST) format and will require users to make requests with the command get and analyze the
response code to determine whether their get request was successful. If the request succeeds, the data is
usually available as a JSON object in the programming environment or can be downloaded onto the disk.

A researcher can call an API to read data from a database directly into their programming
environment. For example, most US federal statistical agencies have an API that allows users to query
data directly from government databases after signing up for an API key (usually for free). Instead of
searching a government website for a link to a CSV file, the API allows the researcher to make a more
specific data query of a known, public data source. Collecting data this way makes research easier to
reproduce and allows data to be collected in real time and at a larger scale. For example, a script can be
written to automatically download new data as it becomes available (e.g., the Department of Labor jobs
report).

Table 2 provides a nonexhaustive list of APIs that are likely useful to students in applied
economics. It also lists some APIs for private data—such as Zillow, X, and Google Maps—that can only be
used after paying for access to the API. These companies typically charge by the number of requests,
which means it can be quite cost-effective for researchers if they only need to query the data a few times.3

Another method for obtaining data is the File Transfer Protocol (FTP), a communication protocol
for transferring files across a network and one of the oldest ways to transfer data between computers.
Instead of having an API, some websites will store their files on an FTP server that users can log on to.
Some FTP servers require an authentication step, while others are accessible from the web browser,
allowing data to be accessed using the URL directly without authentication. FTP servers accessible
through a URL typically have a web address that starts with “ftp:\\” or include “ftp” somewhere in the
name. Two examples of FTP servers for data are the US Census LEHD Origin-Destination Employment
Statistics (LODES) data and the PRISM climate group data from Oregon State University.

3 The main customers of these APIs are usually app developers who want to allow their users to query the information in their
databases repeatedly. For example, the Google Maps API could be used by an app developer to allow the app users to see their
real-time location. Since many researchers do not anticipate having to query the database indefinitely, sending one-time data
requests to these APIs may be affordable even for student research projects.
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Table 2. Popular APIs for data in applied economics

Name of API URL
Agriculture
QuickStats - USDA https://quickstats.nass.usda.gov/api/
Cropland Data Layer https://croplandcros.scinet.usda.gov/
Labor

Bureau of Labor Statistics
Department of Labor

Census

US Census/American
Community Survey

[PUMS

Public Finance

Bureau of Economic
Analysis

Federal Reserve (FRED)
US Treasury

Trade
World Bank (WITS)
World Trade Organization

Health
CDC
Healthcare.gov

Climate and Weather
NOAA

Geography

OpenStreetMap (Overpass
API)

US Census Boundaries
(TIGER)

Open Source Routing
Machine

Private Companies
X/Twitter
Zillow
Google Maps

https: //www.bls.gov/bls/api features.htm

https://developer.dol.gov/beginner/

https://www.census.gov/data/developers/data-sets.html

https://developer.ipums.org/docs/v2/apiprogram

https://apps.bea.gov/api/ pdf/bea web service api user guide.pdf

https://fred.stlouisfed.org/docs/api/fred/
https://fiscaldata.treasury.gov/api-documentation/

http://wits.worldbank.org/data/public/WITSAPI UserGuide.pdf
https://apiportal.wto.org/

https://open.cdc.gov/apis.html

https://data.healthcare.gov/api

https://www.weather.gov/documentation/services-web-api

https://wiki.openstreetmap.org/wiki/API

https://www.census.gov/data/developers/data-sets /TIGERweb-
map-service.html

https://project-osrm.org/docs/v5.5.1 /api/#general-options

https://developer.x.com/en/products/x-api

https://www.zillowgroup.com/developers/

https://developers.google.com/maps
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Accessing data on FTP servers is usually as simple as making a request to the FTP server, similar
to making a request to an API server. In Python, using an API or an FTP server can be done using the
requests package. For an API call, requests needs the URL and a list of parameters for querying the
database with a get request. Downloading a file from an FTP server can also be done with requests. It
requires students to give the URL and then navigate either through an authentication step or directly to
the file and then use Python or R to download it either onto the disk or directly into the programming
environment. If JSON data is downloaded, students can work with JSON files in Python the same way they
would work with the Python object dictionaries. In R, the packages httr and curl are common for
making requests to APIs or downloading files from FTP servers. For working with the resulting JSON
data, the R packages rjson and jsonlite are also helpful.*

A third method of obtaining data is through web scraping. Web scraping involves collecting data
from web pages directly, either structured or unstructured, and is an indispensable skill for obtaining
data that is not in a curated database but still available on web pages. An example of structured data from
a web page is a table embedded in an HTML file, whereas unstructured data could be statistics found in
different places in the text of an HTML file. Collecting the data manually can be time-consuming when
several web pages need to be searched. Writing a script that searches each HTML file and extracts the
data can be more efficient. This allows students to automate the data collection procedure and even
scrape multiple sites in parallel using their computer’s multiple cores.

An essential aspect of teaching students web scraping is addressing its ethical considerations.
While most websites can be legally scraped, students should be aware that some sites include areas the
owner prefers not to be accessed by automated tools. Website owners usually specify these sites in a file
called robots.txt to keep search engines from directing traffic to parts of their website that can crash
from too much traffic. Scraping web pages that owners request not to be scraped is not only an
irresponsible research practice but can also be detrimental to the operation of the website that they are
obtaining data from (e.g., flooding the website with so many requests that it crashes). Students should be
encouraged to be current on these norms and protocols before scraping websites for data.

The BeautifulSoup package—which downloads static HTML websites and allows them to be
searched by HTML tags—is arguably the workhorse web scraping tool for Python. For R programming,
the package rvest provides similar tools. For parallelizing web scraping, the Python package scrapy has
safeguards for not overloading websites with requests. Another more advanced topic students can learn
in web scraping is the use of packages like selenium, available in both R and Python, which allows the
script to interact with the web page. This is an important tool for websites that have JavaScript elements,
such as buttons that need to be clicked to get data, which cannot be scraped from a static HTML page with
a package like BeautifulSoup.

4.2 Data Processing
Once data is downloaded into the R or Python environment, the next stage is to process it. Most students
are familiar with the basic steps of data cleaning: tidying columns, fixing errors, identifying outliers,
merging data sources, etc. For numeric data, this involves standard data manipulation packages like
pandas in Python or dplyr in R.

In this subsection, we focus on the processing of two types of unstructured data: text and image.
Here, we are distinguishing unstructured data as data that is not in the row-column form already familiar
to most students. Processing and cleaning numeric data already in CSV format is arguably taught already
in most econometrics courses or is learned during the process of doing research. Thus, we find it more

4 A few coding examples using these packages can be found in Appendix A1l.
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useful to cover processing text and image data in this article while also mentioning more advanced data
processing topics, such as parallelization and distributed programming.

For teaching text analysis in economics, concepts like n-grams, tokenization, and sentiment
analysis are important to help students engage with the current economics literature using these tools
(Gentzkow and Shapiro 2010; Currie et al. 2020; Elliott and Elliott 2020b; Indaco 2020; Spangler and
Smith 2022; Shapiro et al. 2022). For more details on processing text data, readers can refer to Gentzkow
et al. (2019), which reviews some common skills and concepts needed for text analysis and examples of
economics papers using text data. In terms of packages, an important text processing package in Python
is n1tk (Natural Language Toolkit), which includes tools for breaking down text into various levels for
analysis (a process called tokenization) and sentiment analyzers. The sentiment analysis models in n1tk
include off-the-shelf, rule-based models such as Valence Aware Dictionary and Sentiment Reasoner
(VADER) and trainable models such as the Naive Bayes classifier. In R, similar resources are available in
the tidytext and quanteda packages. For either R or Python, students can also benefit from learning
how to use regular expressions to search text and extract particular patterns of text.

Though the use of text data is growing in economics, the use of spatial data has become even more
ubiquitous. In particular, the economics field now heavily uses satellite (Donaldson and Storeygard 2016)
and weather (Auffhammer et al. 2013) data to analyze topics in urban, environmental, agricultural, and
practically every other field of applied economics. Since spatial data is often not presented in CSV format,
teaching students a baseline level of geospatial data processing skills is essential to teaching students
how to visualize spatial data. Students must know at least two file formats for basic geospatial data
processing: raster (e.g., .png, .tiff) and vector (e.g., .shp, .json).

Understanding coordinate reference systems is essential for students to learn how to work with
these files. Students can start by learning about geographic reference systems, which approximate the
earth as an ellipsoid (a geodetic datum) and use a geographic coordinate system to describe locations,
often in latitude and longitude. Converting these ellipsoid-based coordinates to a flat surface results in a
projected coordinate system. Teaching this process helps students recognize the differences between
spatial data in geographic coordinates (like latitude and longitude) and projected coordinates and
understand how to compare them correctly. It also introduces different map projections, which can
prioritize accuracy in either distance or area but not both, illustrating the trade-offs of each approach.

To process raster files, an image file with a geographic reference system attached, students also
need to understand the basics of image processing. An image file is simply a numerical array that can be
manipulated with any standard matrix operation. Image processing techniques, thresholding, and
masking can then be effectively taught as simple applications of array manipulation to images.

With foundational GIS knowledge, students can start processing raster files as two-dimensional
arrays, where each pixel’s value corresponds to a row and column position. Raster files add geographic
metadata to these positions, translating them into real-world coordinates like latitude and longitude.
Thus, any operation performed on arrays can also be applied to rasters; after each transformation, the
geographic metadata needs to be re-embedded to make it a raster again. In Python, packages like
skimage support image processing, while rasterio and xarray handle rasters; in R, magick and terra
serve similar functions.

For vector files, sequences of points that represent a boundary map on a geographic grid, students
can be similarly taught to manipulate the vector of x and y coordinates the way they would a dataset and
then re-embed the geographic metadata. Useful packages include Python’s geopandas and shapely
packages, with geopandas providing an interface very similar to pandas. R’s st package is a powerful
tool for vector editing, while the tigris package allows users to download US political boundary data
directly from the Census Bureau’s TIGER/Line database.
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In addition to the rise of unstructured data, numeric data has also grown larger and more
challenging to work with. For some data visualization tasks, students may benefit from learning how to
parallelize repetitive data processing tasks like scraping websites, estimating bootstrap statistics, or
processing multiple files independently but simultaneously. In Python, popular parallelization packages
are dask for the simplest operations to parallelize (often called embarrassingly parallel) and
multiprocessing for more complex operations. In R, similar functionality is available with the package
parallel and boot if students specifically need to bootstrap statistics. For working with large datasets,
the Python packages dask and PySpark are useful for distributed programming, meaning processing
data across multiple nodes of a computing cluster. In R, the package data.table is useful for working
with large datasets while still using the data.frame front end that most R users are familiar with.

For the most memory- or CPU-intensive operations, instructors may consider devoting part of
their instruction to teaching students to use a high-performance computing (HPC) cluster. Working on
these systems requires a baseline knowledge of programming in the terminal language Bash since most
systems run on a Linux operating system and can only be accessed through a terminal using a Secure
Shell (SSH) protocol. The usefulness of teaching students to use an HPC cluster will depend on the scale of
the data they usually use and each class’s access to these resources. Even if they do not have access to an
HPC, instructors can buy computing time on a larger server using the cloud computing services Google
Cloud and Amazon Web Services (AWS).

4.3 Data Visualization

The final stage of the pipeline involves using R or Python to create data visualizations. Each language has
a core plotting package essential for students to learn, as most advanced visualization packages build
upon it. Developing familiarity with this foundational package is key, as it provides the basis for
understanding and using other visualization tools within the language.>

In Python, this package is matplotlib. Almost every plotting package in Python—such as
seaborn, plotly, and bokeh—call this package as their main dependency and are built off its
architecture. One way to approach teaching matplotlib to students is to focus on teaching students the
two main ways to write matplotlib code: MATLAB style and object-oriented style. Originally,
matplotlib was written to mimic the graphics commands of the software MATLAB (hence the “mat” in
the name), and so the first way to use matplotlib is through editing an active plot (Hunter 2007). In this
way of writing code, the user writes commands that update the data and parameters of only one plot. To
make and edit another plot, the user has to clear that plot as the active plot. In Python programming, this
is done by calling functions from the sublibrary matplotlib.pyplot (almost always imported into code
as the shorthand p1t).

The object-oriented method of using matplotlib is arguably a more Pythonic way to write code,
as it does not use an active plot but instead creates objects that the user edits directly. In this style of
writing code, a user usually calls the function subplots from the library matplotlib.pyplot, which
creates a figure object and an axes object. To manipulate the plot, the user can either edit the figure
object, which is the top-level container for the whole plot, or the axes object, which contains the actual
plotted data as well as the axis labels. The advantage of this approach is that students can create and edit
multiple plots as objects instead of clearing the active plot when they want to create a new one. For more
details on the differences between these approaches, readers can refer to the summary in Sanap (2020)
and the matplotlib user guide.®

5 Examples of code producing basic plots in both R and Python are available in Appendix A2.
6 User guide can be found at this link.
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While there are plotting functions in base R (default functions included without importing
packages), the primary plotting package has more or less become ggplot2. While matplotlib was
written to originally replicate MATLAB plotting commands, ggplot2 was designed as a “layered
grammar of graphics” by Wickham (2010), taking inspiration from the original book The Grammar of
Graphics (Wilkinson, 2005). The purpose of a “grammar of graphics” is to be “a tool that enables us to
concisely describe the components of a graphic” (Wickham 2010, p. 3). The components of a graphic in
this framework include the data, aesthetic mappings, statistical transformations, scaling, and the
coordinate system. In ggplot2, a graph layer specifies the data, which variables are mapped to each part
of the graph (e.g., x-axis or y-axis), what geometric object should represent their relationship, and what
transformations should be done to the data.

In practice, code in ggplot2 looks like a series of function calls added together with the + sign,
with each function call representing a component of the graph. For example, the function call
aes(x=height,y=weight) specifies that height should be mapped to the x-axis and weight to the y-
axis, geom_point () specifies the data will be represented as a scatter plot, and coord_cartesian()
defines the coordinate system as Cartesian. Put together, a graph in ggplot2 could be coded as
ggplot(data,aes(x=height,y=weight)) + geom_point() + coord_cartesian().Students may
find this structure unintuitive, which makes it important to include an explanation of the layered
grammar of graphics philosophy explained in Wickham (2010).

Since most of these packages are based on matplotlib and ggplot2, it is helpful for students to
have experience with the design and syntax of Python and R’s most important plotting packages before
learning more advanced ones. Having learned the syntax of the two packages, students can better
understand and modify the parameters of the more advanced packages. More advanced plotting packages
include seaborn, plotly, and bokeh for Python and lattice, ggiraph, and Leaflet for R. The
purpose of many of these packages is to expand the sorts of plots that can be done in matplotlib and
ggplot2, including maps, interactive graphs, and more complicated plot types. The packages plotly,
bokeh, and ggvis can specifically be used to deploy interactive graphs as JavaScript applications, which
can be deployed to websites. For both Python and R, the package shiny can also be used to deploy
interactive data visualizations to web pages.

5 An Example of the Pipeline
To assist those unfamiliar with the process, we provide a brief illustration of the data visualization
pipeline at work. In a recent study of crop insurance use among minority and veteran farmers,
researchers visualized the overall volume of crop insurance policies in each US county (Hagerman et al.
2025, refer to Figure 1). Creating a similar figure for the year 2017 uses all three stages of the data
visualization pipeline. We present excerpts from reproducible code examples that collect, process, and
visualize data from the USDA Risk Management Agency (RMA), USDA National Agricultural Statistics
Service (NASS), and the US Census Bureau. In the appendix material, we include the full scripts that can
reproduce the figures after inserting an API key for the NASS APL.”

First, data were collected from three sources:

(1) USDA Risk Management Agency: the annual number of policies sold—pooled across all levels of
coverage—for a given commodity in each US county in 2017

(2) USDA National Agricultural Statistics Service: the number of farms in each US county in 2017

(3) US Census Bureau: the TIGER/Line files for all counties in the lower 48 United States

7 The scripts for this section are also publicly available at the GitHub repository link for this paper.
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Python Code R Code
import requests 1 library(httr)
2 library(utils)
api_key = "API Key"” 3
base_url = "https://quickstats.nass.usda.gov/api/api_GET/" 4 api_key <- "API Key”
5 base_url <- "https://quickstats.nass.usda.gov/api/api_GET/"
params = {'key': api_key, 6
‘source_desc': 'CENSUS', 7 params <- list(key = api_key,
'source_desc': 'CENSUS', 8 source_desc = "CENSUS",
'domain_desc': 'TOTAL', 9 domain_desc = "TOTAL",
'short_desc':'FARM OPERATIONS - NUMBER OF OPERATIONS', 10 short_desc = "FARM OPERATIONS - NUMBER OF OPERATIONS",
‘year': '2017', 11 year = "2017",
‘agg_level _desc': 'COUNTY' 12 agg_level_desc = "COUNTY",
} 13 format = "csv")
14
response = requests.get(base_url, params=params) 15 response <- GET(base_url, query = params)
16 nass17_df <- content(response, "parsed”)
nass17 = response.json() 17

nass17_df = pd.DataFrame(nass17[ 'data’])

Figure 7. Using the NASS API to download data

Python Code R Code

1 import pandas as pd 1 library(dplyr)

2 2 library(sf)

3 fH# RMA 3 library(tidyverse)

4 4

5 # Create county FIPS 5 ## RMA

6 rmal7['GEQID"] = rmal7['state fips'].astype(str).str.zfill(2) 5] rmal? <- rmal7? %>%

7 + rmal7['FIPS'].astype(str).str.zfill(3) T # Create county FIPS

8 8 mutate(GEOID = paste@(state_fips,FIPS)) %%

9 # Total policies by county 9 # Total policies by county
10 rmal7? = rmal7.groupby(['GEOID'])[ 'policies_seld_total'].sum() 10 summarize(policies = sum(policies_sold_total), .by = GEOID)
11 rmal? = rmal7.reset_index() 11

12 12 ## NASS

13 ## NASS 13 nass17_df <- nass17_df %>%

14 14 # Create county FIPS

15 # Create county FIPS 15 mutate(GEOLD = paste@(state_fips_code,county_code)) %>%
16 nass17_df['GEOID'] = nass17_df[ 'state_fips_code'] + \ 16 # Convert to integer

17 nass17_df['county_code'] 17 mutate(farms = as.numeric(gsub(”,","",Value))) %%
18 18 # Select just two columns

19 # Convert to integer 19 select (GEQID, farms)
20 nass17_df['farms"] = nass17_df[ 'Value'].str.replace(”,”,"")\ 20
21 .astype(int) 21 ## Census
22 22 county_boundaries <- counties %>%
23 # Select just two columns 23 shift_geometry() %>%
24 nass17_df = nass17_df[['CGEOID', 'farms']] 24 select(GEOID, STUSPS, NAME) %>%
25 25 # Continental US only
26 ## Census 26 filter(GEQID < 6@,
27 27 STUSPS != "AK',
28 # Continental US only 28 STUSPS != 'HI')
29 counties = counties[(counties['GEOID'].astype(int) < 600@2) & 29
30 (counties[ 'STUSPS'] != '#K') & 30 # Only keep states in the county boundary
31 (counties[ 'STUSPS'] |= 'HI')] 31 state_boundaries <- states #>%
32 32 filter(STUSPS %in% pull(counties,STUSPS))
33 counties = counties.to_crs({'init': 'epsg:587a'}) 33
34 34 # Merge in data
35 # Only keep states in the county boundary 35 df <- county_boundaries %>%
36 US_states = states['STUSPS'].isin(counties['STUSPS'].unique()) 36 left_join(rma17, by = "GEOID") %>%

37 states= states[US_states] 37 left_join(nass17_df, by = "GEOID")

38 38

39 states = states.to_crs({'init': 'epsg:5872'}) 39 df <- df %%

40 40 # Make variable

41 # Merge in data on GEOID (FIPS) 41 mutate(policies_per_farm = policies/farms) %>%

42 df = counties.merge(rmal7,how="left",on="GEQID") 42 # Fill NAs with zero

43 df = df.merge(nass17_df how="1eft" on="GEOID") 43 mutate(policies_per_farm = ifelse{is.nan(policies_per_farm),
44 44 2,

45 # Make variable 45 policies_per_farm)) %>%
46 df['policies_per_farm'] = df['policies_sold_total'l/df['farms'] 46 mutate(policies_per_farm = ifelse{is.na(policies_per_farm),
47 47 2,

48 # Fill MAs with zero 48 policies_per_farm))

49 df['policies_per_farm'] = df['policies_per_farm'].fillna(@)

Figure 8. Cleaning and merging data
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Python Code R Code

1 import matplotlib.pyplot as plt 1 library(ggplot2)

2 from matplotlib.colors import Normalize 2 library(scales)

3 from matplotlib.colorbar import ColorbarBase 3

4 4 # Create plot

5 # Create plot 5 p <- ggplot() +

6 fig, ax = plt.subplots(figsize=(10@, 6)) 6

7 T # Plot counties with the coloring for policies per operation

8 # Create normalization for colormap 8 geom_sf(data = df,

9 norm = Normalize(vmin=0, vmax=20) 9 aes(fill = policies_per_operation),

10 10 color = "black”, linewidth = .1) +

11 # Plot counties with the coloring for policies per operation 11

12 df.plot(ax=ax, 12 # Plot state boundaries

13 column='policies_per_operation’, 13 geom_sf(data = state_boundaries,

14 cmap="magma_r"', 14 fill = NA,

15 linewidth=0.1, 15 color = "black”, linewidth = .25) +

16 edgecolor='black’, 16

17 norm=norm) 17 # Set colormap and create colorbar

18 18 scale_fill_viridis_c(option = 'magma’',

19 # Plot state boundaries 19 direction = -1,

20 state_boundaries.boundary.plot(ax=ax, 20 # Create normalization for colormap

21 color="black"', 21 limits = c(@, 2@), oob = squish,

22 linewidth=0.25) 22 name = "Policies Sold (Per Farm Operation), 2017",
23 23 guide = guide_colourbar(title.position = "top"”,
24 # Remove axes 24 title.hjust = @.5,
25 ax.set_axis_off() 25 barheight = 0.35,
26 26 barwidth = 25)) +
27 # Create colorbar 27 theme_void() +

28 cbar_ax = fig.add_axes([0.25, 0.95, @.5, 0.03]) 28

29 cbar = ColorbarBase(cbar_ax, 29 # Set legend options
30 norm=norm, 30 theme(legend. title = element_text(hjust = 0.5,
31 cmap="magma_r", 31 vjust = 0.5,
32 orientation='horizontal', 32 face = 'bold'),
33 ticks=[0,5,10,15,20]) 33 legend.position = 'bottom')
34 cbar.set_label("Policies Sold (Per Farm Operation), 217", 34
35 fontweight='bold', labelpad=10) 35 # Display the map
36 36 print(p)
37 # Adjust layout 37
38 plt.tight_layout() 38
39 plt.subplots_adjust(bottom=0.15) 39
40 40
41 # Display the map 41
42 plt.show() 42

43

Policies Sold (Per Farm Operation), 2017

Policlos Sold (Per Farm Operation), 2017

Figure 9. Creating a map of crop insurance policies

These data can either be downloaded as CSV files (to be processed as local data files on the
researcher’s machine) or, in the case of NASS and census data, the data can be accessed via an AP1.8 In
Figure 7, we show how to use requests in Python and httr to download census data from the NASS APIL.
In both cases, the code sends a get request to the URL and sends back a JSON or CSV file. In the case of

8 Cartographic boundaries for US counties were easily collected using the tigris package (Walker 2016), which imports

shapefiles with a few short lines of code.
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Python, the response comes back as a JSON file and there is an extra step to convert it to a pandas
dataframe.

Second, we merge the boundary files, NASS data, and RMA data into a single dataset (see Figure 8).
The data files gathered from USDA include a common variable—the county FIPS (Federal Information
Processing Standards) code—which is used as a unique identifier to join together policies sold (USDA
RMA) and farm operations (USDA NASS). The FIPS codes are created by concatenating state and county
FIPS codes. Before joining them, both dataframes are manipulated to sum policies by county in the RMA
data and remove commas from numbers to make the columns numeric in the NASS data. The county and
state boundaries are reprojected with only the lower 48 states included in the file. The boundary files are
then merged to the RMA and NASS data to create a dataframe called df.

At this stage, a spatial data visualization (i.e., a county map) is possible, but it would be misleading
and largely unhelpful. This is because the crop insurance data is stored as a count of policies sold; to be
truly beneficial to the intended audience, the data should be presented as a normalized measure, such as
a rate or ratio. This is accomplished by dividing policies sold by the number of farm operations,
transforming the variable into a per capita measure that can be readily compared across counties. In the
dataframe, we divide the total policies per county by the number of farms, creating the variable
policies_per_farm.

Finally, once the data were collected and processed, we can use matplotlib in Python or
ggplot2in R to create a choropleth map of policies sold per farm at the county level. Figure 9 shows
code in both languages that create the map. In addition to creating the map itself, the code creates a
labeled color bar at the bottom of the figure.

These two pathways—using either R or Python—both arrive at the same goal: a clear and concise
map that illustrates how the use of crop insurance varies across space. The data visualization pipeline
effectively transforms raw data into actionable insights by systematically collecting, processing, and
presenting information in a clear and interpretable manner. This process not only enhances the clarity of
complex data but also empowers stakeholders to make more informed decisions by providing them with
intuitive visualizations that reveal patterns and trends that might otherwise remain hidden.

6 Conclusion

The ability to effectively visualize data is an essential skill for today’s applied economists and
researchers. As the volume and complexity of data available continue to grow, the capacity to transform
raw numbers into clear, compelling graphics will continue to be indispensable for both instructional and
outreach purposes.

This paper has outlined a comprehensive framework for teaching data visualization, from the
foundational stages of data collection and processing to the principles of effective chart design and
communication. By equipping students and stakeholders with the technical know-how to manipulate
data in open-source software programs, as well as the critical eye to identify good versus bad
visualizations, instructors can better prepare the next generation of applied economists to harness the
power of data visualization. Moreover, by strengthening both data visualization and graph literacy skills,
we enhance the ability of students and stakeholders to communicate and apply research insights
effectively in real-world contexts.

The framework for teaching data visualization outlined in this paper supports not only academic
research but also the critical outreach and Extension activities that are central to applied and agricultural
economics. The emphasis on graph literacy skills for outreach audiences ensures that the insights derived
from agricultural research can be shared and applied by a wide range of stakeholders beyond the
classroom. As data-driven decision-making becomes ever more prevalent, these skills will only grow in
importance for the field.
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Appendix A: Supplementary Code Examples

A1 Data Collection

In Python, the requests package is the most popular package for sending get requests to websites and
databases. In order to download the HTML data from a webpage, the user need only put the URL into the
get function:

import requests
r = requests.get("www.example.com/document.html”)

The status code can be checked by calling the status attribute of the request like so:

r.status_code

A status code of 200 indicates success and any number starting with 4 usually means a failure (e.g., 404,
401). When the get request is being sent to an API, the request must also contain data specifying what
data is being requested. For example, this call to the NASS QuickStats API requests the total number of
milk cows at the state level from the 2017 Census of Agriculture:

URL = "http://quickstats.nass.usda.gov/api/api_GET/"

params = {
"key": api_key, # Put the API KEY
"year":"2017", # The year we want.
"domain_desc”:"TOTAL", # Total across all domains
"source_desc":"CENSUS"”,# Census, not survey
"agg_level_desc”:"STATE", # Level of data.
"short_desc”:"CATTLE, COWS, MILK - INVENTORY" # variable name

}

r = requests.get(url = URL, params = params)

The python dictionary params contains the information the API needs to pull the data and is an argument
of the function get. If the call is successful, the data will be stored in JSON format within the response
object, here called r.

Here is an example of an API call just using a URL and the website Open Source Routing Machine
(OSRM), a free API that can calculate road distance using the road network in Open Street Maps.? Below,
we can calculate the distance and duration of a route between Boston and New York by supplying the

9 These code samples were drafted with Claude 3.5 but then edited and tested by the authors. The prompt was, “Can you create
two new code examples, one in R and one in Python, that make an API call to Open Source Routing Machine and extract the
distance between two points?” which was followed up with “Don’t make any functions, just run the New York and Boston
example” to make it only one API call with no functions defined. Both scripts were tested in Python 3.8 and R 4.4.1.

Page | 22 Advance Access



Applied Economics Teaching Resources

X AAEA

Agricultural & Applied

latitude and longitude points to the URL. In both R and Python, the coordinates have to be pasted into the
URL http://router.project-osrm.org/route/v1/driving/{coords}?overview=false, where the pairs of
coordinates go in {coords}, separated by a semicolon.

oI U W=

Python Code

R Code

# Use requests package 1
import requests 2
3

# New York and Boston coordinates 4
ny_lon, ny_lat = -74.006, 406.7128 5
boston_lon, boston_lat = -71.0589, 42.3601 6
7

# Create coordinates string for API 8
coords = f"{ny_lon},{ny_lat};{boston_lon}, {boston_lat}" 9
10

# Construct URL with coordinates string 11
url = f"http://router.project-osrm.org/route/v1/driving/\ 12
{coords}\ 13
?overview=false” 14

15

# GET request 16
response = requests.get(url) 17
18

# Get JSON 19
data = response. json() 20
21

# Get distance and duration 22

distance_km = data["routes”][@]["distance”] / 1006 # Meters to kilomet&3
duration_min = data["routes"][@]["duration”] / 360@ # Seconds to hour24
25
26
27
28
29
30
31
32

print(f"Driving distance: {distance_km:.1f} km")
print(f"Estimated duration: {duration_min:.1f} hours”)

A2 Data Visualization
To demonstrate how the base visualization packages are designed in Python and R, we include code in R
and Python that demonstrate different ways to make plots. In the first example, a random dataset is
produced and plotted in matplotlib in the “Matlab” style and the “Object-Oriented” style.

W10 U R W~
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“Matlab” Style

# R version
library(httr)
library(jsonlite)

# New York and Boston coordinates
ny_coords <- c(-74.006, 4@.7128)
boston_coords <- ¢(-71.0589, 42.3601)

# Create coordinates string for API
coords <- paste(

paste(ny_coords[1], ny_coords[2], sep = ","),
paste(boston_coords[1], boston_coords[2], sep = ","),
sep = ;"

)

# Construct URL with the coordinates string

url <- paste@("http://router.project-osrm.org/route/v1/driving/",
coords,
"?overview=false")

# GET request
response <- GET(URL)

# Get JSON
data <- fromJSON(rawToChar (response$content))

# Get distance and duration
distance_km <- data$routes$distance / 1000 # Meters to kilometers

duration_min <- data$routes$duration / 36¢0 # Seconds to hours

cat(sprintf(”"Driving distance: %.1f km\n"”, distance_km))
cat(sprintf("Estimated duration: %.1f hours\n"”, duration_min))

Object-Oriented Style

# Import packages 1
import numpy as np 2
import matplotlib.pyplot as plt 3
4

# Data generation 5
np.random.seed(42) 6
X = np.random.normal(@, 1, 100) 7
y = 0.5 * x + np.random.normal(®, 9.5, 100) 8
9

# Create the figure 10
plt.figure(figsize=(8, 6)) 11
12

# Scatter plot 13
plt.scatter(x, y, alpha=0.5) 14
15

# Set labels and title 16
plt.xlabel('X values') 17
plt.ylabel('Y values') 18
plt.title('Basic Scatter Plot with Matplotlib, "Matlab style"') 19
20

# Display the plot 21
plt.show() 22

# Import packages
import numpy as np
import matplotlib.pyplot as plt

# Data generation
np.random. seed(42)
X = np.random.normal(@, 1, 100)

y = 0.5 * x + np.random.normal (9, @.5, 100)
# Create figure and axis objects

fig, ax = plt.subplots(figsize=(8, 6))

# Create the scatter plot using the axis object
scatter = ax.scatter(x, y, alpha=0.5)

# Set labels and title

ax.set_xlabel('X values')

ax.set_ylabel('Y values')

ax.set_title('Basic Scatter Plot with Matplotlib (Object-Oriented)')

# Display the plot
plt.show()
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In the second example, we plot the random data in “base” R and ggplot2.

W0 -1] U W

Base R

ggplot2

# Set random seed for reproducibility
set.seed(42)

# Generate example data
data <- data.frame(

X = rnorm(100),

y = rnorm(100)
)

# Create the plot
# First, create an empty plot with the basic structure
plot(data$x, datasy,

type = "n", # "n" means no plotting initially

main = "Basic Scatter Plot with Base R",
xlab = "X values”,
ylab = "Y values™)

# Add points on top of grid
points(data$x, data$y,
pch = 19, # Solid circle point type
col = adjustcolor(”black”, alpha.f = ©.5)) # Add transparency

OOooNO U R WK -

# R version using ggplot2
library(ggplot2)

# Generate example data
set.seed(42)
data <- data.frame(
x = rnorm(16@),
y = rnorm(16@)
)

# Create the scatter plot
ggplot(data, aes(x = x, y = y)) +
geom_point(alpha = 9.5) +

labs(
title = "Basic Scatter Plot with ggplot2"”,
x = "X values”,
y = "Y values”
)+

theme_minimal()

About the Authors: Jared Hutchins (jhtchns2@illinois.edu) is an Assistant Professor of Agricultural & Consumer Economics
with the University of Illinois Urbana-Champaign. Andrew ]. Van Leuven (andrew.vanleuven@uvm.edu) is an Assistant
Professor of Community Development & Applied Economics at the University of Vermont.
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